Incidence of Fetal Growth Restriction in Women with Preeclampsia

Nita Kutllovci, Burim Neziri

 
For citation: Kutllovci N, Neziri B. Incidence of Fetal Growth Restriction in Women with Preeclampsia. International Journal of Biomedicine. 2024;14(3):458-463. doi:10.21103/Article14(3)_OA11
 
Originally published September 6, 2024

Abstract: 

Background: Preeclampsia (PE), accompanied by fetal growth restriction (FGR), is one of the causes of perinatal and maternal morbidity and mortality. Some known pregestational conditions and obstetrical complications, together with PE, play a critical role in developing fetal complication outcomes, including FGR. This study aimed to investigate the relationship between pregestational conditions & obstetrical complications and fetal outcomes in women with PE.
Methods and Results: This retrospective study was conducted at the University Clinical Center of Kosova, Clinic of Gynecology and Obstetrics. We have reviewed all the medical records of 226 pregnant patients with preeclampsia who delivered by cesarean section (C-section) between January 2017 and December 2021. The mean gestational age at delivery was 34 weeks and 6 days, indicating that most of our cases had experienced preterm delivery. Preeclampsia was defined according to the ACOG criteria. Most patients diagnosed with preeclampsia (78.8%) have no other pregestational conditions or obstetrical complications. Among other obstetrical complications, placental abruption and oligohydramnios are the most common (8.8% and 8.0%, respectively). Fetal growth abnormalities were detected in 86 cases (38.1%): FGR in 85 cases (37.6%) and macrosomia in only one case (0.44%) (P<0.0001) in a diabetic patient. A weak statistically significant positive correlation was found between gestational age and FGR (r=0.216, P=0.001).
Conclusion: A positive correlation between gestational age in PE and FGR indicates common pathophysiological mechanisms linking PE and FGR. Preeclampsia can have a direct adverse impact on the fetal growth.

Keywords: 
preeclampsia • oligohydramnios • obstetrical complications • fetal growth restriction
References: 
  1. Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, McAuliffe F, da Silva Costa F, von Dadelszen P, McIntyre HD, Kihara AB, Di Renzo GC, Romero R, D'Alton M, Berghella V, Nicolaides KH, Hod M. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019 May;145 Suppl 1(Suppl 1):1-33. doi: 10.1002/ijgo.12802. Erratum in: Int J Gynaecol Obstet. 2019 Sep;146(3):390-391. doi: 10.1002/ijgo.12892. PMID: 31111484; PMCID: PMC6944283.
  2. Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP. Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation. 1999 Jun 22;99(24):3092-5. doi: 10.1161/01.cir.99.24.3092. PMID: 10377069.
  3. Poston L. Endothelial dysfunction in pre-eclampsia. Pharmacol Rep. 2006;58 Suppl:69-74. PMID: 17332674.
  4. Osol G, Ko NL, Mandalà M. Altered Endothelial Nitric Oxide Signaling as a Paradigm for Maternal Vascular Maladaptation in Preeclampsia. Curr Hypertens Rep. 2017 Sep 23;19(10):82. doi: 10.1007/s11906-017-0774-6. PMID: 28942512.
  5. Tomimatsu T, Mimura K, Matsuzaki S, Endo M, Kumasawa K, Kimura T. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. Int J Mol Sci. 2019 Aug 30;20(17):4246. doi: 10.3390/ijms20174246. PMID: 31480243; PMCID: PMC6747625.
  6. McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne). 2020 Sep 11;11:655. doi: 10.3389/fendo.2020.00655. PMID: 33042016; PMCID: PMC7516342.
  7. Osol G, Ko NL, Mandalà M. Altered Endothelial Nitric Oxide Signaling as a Paradigm for Maternal Vascular Maladaptation in Preeclampsia. Curr Hypertens Rep. 2017 Sep 23;19(10):82. doi: 10.1007/s11906-017-0774-6. PMID: 28942512.
  8. Nunes PR, Mattioli SV, Sandrim VC. NLRP3 Activation and Its Relationship to Endothelial Dysfunction and Oxidative Stress: Implications for Preeclampsia and Pharmacological Interventions. Cells. 2021 Oct 21;10(11):2828. doi: 10.3390/cells10112828. PMID: 34831052; PMCID: PMC8616099.
  9. Shaheen G, Jahan S, Ain QU, Ullah A, Afsar T, Almajwal A, Alam I, Razak S. Placental endothelial nitric oxide synthase expression and role of oxidative stress in susceptibility to preeclampsia in Pakistani women. Mol Genet Genomic Med. 2020 Jan;8(1):e1019. doi: 10.1002/mgg3.1019. Epub 2019 Nov 8. Erratum in: Mol Genet Genomic Med. 2020 Mar;8(3):e1191. doi: 10.1002/mgg3.1191. PMID: 31701677; PMCID: PMC6978247.
  10. Brosens IA. Morphological changes in the utero-placental bed in pregnancy hypertension. Clin Obstet Gynaecol. 1977 Dec;4(3):573-93. PMID: 598186.
  11. Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173-92. doi: 10.1146/annurev-pathol-121808-102149. PMID: 20078220.
  12. Steinberg G, Khankin EV, Karumanchi SA. Angiogenic factors and preeclampsia. Thromb Res. 2009;123 Suppl 2:S93-9. doi: 10.1016/S0049-3848(09)70020-9. PMID: 19217486.
  13. Weiler J, Tong S, Palmer KR. Is fetal growth restriction associated with a more severe maternal phenotype in the setting of early onset pre-eclampsia? A retrospective study. PLoS One. 2011;6(10):e26937. doi: 10.1371/journal.pone.0026937. Epub 2011 Oct 28. PMID: 22046419; PMCID: PMC3203930.
  14. Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986 Oct;93(10):1049-59. doi: 10.1111/j.1471-0528.1986.tb07830.x. PMID: 3790464.
  15. Witlin AG, Saade GR, Mattar F, Sibai BM. Predictors of neonatal outcome in women with severe preeclampsia or eclampsia between 24 and 33 weeks' gestation. Am J Obstet Gynecol. 2000 Mar;182(3):607-11. doi: 10.1067/mob.2000.104224. PMID: 10739516.
  16. Shear RM, Rinfret D, Leduc L. Should we offer expectant management in cases of severe preterm preeclampsia with fetal growth restriction? Am J Obstet Gynecol. 2005 Apr;192(4):1119-25. doi: 10.1016/j.ajog.2004.10.621. PMID: 15846190.
  17. Mitani M, Matsuda Y, Makino Y, Akizawa Y, Ohta H. Clinical features of fetal growth restriction complicated later by preeclampsia. J Obstet Gynaecol Res. 2009 Oct;35(5):882-7. doi: 10.1111/j.1447-0756.2009.01120.x. PMID: 20149036.
  18. Society for Maternal-Fetal Medicine (SMFM). Electronic address: pubs@smfm.org; Martins JG, Biggio JR, Abuhamad A. Society for Maternal-Fetal Medicine Consult Series #52: Diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am J Obstet Gynecol. 2020 Oct;223(4):B2-B17. doi: 10.1016/j.ajog.2020.05.010. Epub 2020 May 12. PMID: 32407785.
  19. Lees CC, Stampalija T, Baschat A, da Silva Costa F, Ferrazzi E, Figueras F, Hecher K, Kingdom J, Poon LC, Salomon LJ, Unterscheider J. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020 Aug;56(2):298-312. doi: 10.1002/uog.22134. PMID: 32738107.
  20. Demirci O, Selçuk S, Kumru P, Asoğlu MR, Mahmutoğlu D, Boza B, Türkyılmaz G, Bütün Z, Arısoy R, Tandoğan B. Maternal and fetal risk factors affecting perinatal mortality in early and late fetal growth restriction. Taiwan J Obstet Gynecol. 2015 Dec;54(6):700-4. doi: 10.1016/j.tjog.2015.03.006. PMID: 26700988.
  21. Ormesher L, Vause S, Higson S, Roberts A, Clarke B, Curtis S, Ordonez V, Ansari F, Everett TR, Hordern C, Mackillop L, Stern V, Bonnett T, Reid A, Wallace S, Oyekan E, Douglas H, Cauldwell M, Reddy M, Palmer K, Simpson M, Brennand J, Minns L, Freeman L, Murray S, Mary N, Castleman J, Morris KR, Haslett E, Cassidy C, Johnstone ED, Myers JE. Prevalence of pre-eclampsia and adverse pregnancy outcomes in women with pre-existing cardiomyopathy: a multi-centre retrospective cohort study. Sci Rep. 2023 Jan 4;13(1):153. doi: 10.1038/s41598-022-26606-z. PMID: 36599871; PMCID: PMC9813256.
  22. Karkia R, Giacchino T, Watson H, Gough A, Ramadan G, Akolekar R. Maternal and neonatal complications in pregnancies with and without pre-gestational diabetes mellitus. J Perinat Med. 2023 Sep 7;52(1):30-40. doi: 10.1515/jpm-2023-0183. PMID: 37677847.
  23. Hornová M, Šimják P, Anderlová K. Preeclampsia and diabetes mellitus. Ceska Gynekol. 2023;88(6):467-471. English. doi: 10.48095/cccg2023467. PMID: 38171923.
  24. Balogun OA, Khanagura RK, Kregel HR, Amro FH, Sibai BM, Chauhan SP. Preterm Preeclampsia with Severe Features: Composite Maternal and Neonatal Morbidities Associated with Fetal Growth Restriction. Am J Perinatol. 2018 Jul;35(8):785-790. doi: 10.1055/s-0037-1617456. Epub 2018 Jan 3. Erratum in: Am J Perinatol. 2018 Jul;35(8):e2. doi: 10.1055/s-0039-1697912. PMID: 29298455.
  25. Han M, Liu D, Zeb S, Li C, Tong M, Li X, Chen Q. Are maternal and neonatal outcomes different in placental abruption between women with and without preeclampsia? Placenta. 2019 Sep 15;85:69-73. doi: 10.1016/j.placenta.2019.07.003. Epub 2019 Jul 5. PMID: 31311680.
  26. Ni S, Wang X, Cheng X. The comparison of placental abruption coupled with and without preeclampsia and/or intrauterine growth restriction in singleton pregnancies. J Matern Fetal Neonatal Med. 2021 May;34(9):1395-1400. doi: 10.1080/14767058.2019.1637850. Epub 2019 Jul 7. PMID: 31248311.
  27. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019 Jan;133(1):1. doi: 10.1097/AOG.0000000000003018. PMID: 30575675.
  28. Poon LC, Galindo A, Surbek D, Chantraine F, Stepan H, Hyett J, Tan KH, Verlohren S. From first-trimester screening to risk stratification of evolving pre-eclampsia in second and third trimesters of pregnancy: comprehensive approach. Ultrasound Obstet Gynecol. 2020 Jan;55(1):5-12. doi: 10.1002/uog.21869. PMID: 31503374.
  29. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, Hall DR, Warren CE, Adoyi G, Ishaku S; International Society for the Study of Hypertension in Pregnancy (ISSHP). The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018 Jul;13:291-310. doi: 10.1016/j.preghy.2018.05.004. Epub 2018 May 24. PMID: 29803330.
  30. Chaemsaithong P, Sahota DS, Poon LC. First trimester preeclampsia screening and prediction. Am J Obstet Gynecol. 2022 Feb;226(2S):S1071-S1097.e2. doi: 10.1016/j.ajog.2020.07.020. Epub 2020 Jul 16. PMID: 32682859.
  31. Elkafrawi D, Sisti G, Araji S, Khoury A, Miller J, Rodriguez Echevarria B. Risk Factors for Neonatal/Maternal Morbidity and Mortality in African American Women with Placental Abruption. Medicina (Kaunas). 2020 Apr 13;56(4):174. doi: 10.3390/medicina56040174. PMID: 32295061; PMCID: PMC7230772.
  32. Naruse K, Shigemi D, Hashiguchi M, Imamura M, Yasunaga H, Arai T; Advanced Life Support in Obstetrics (ALSO)-Japan Research Group. Placental abruption in each hypertensive disorders of pregnancy phenotype: a retrospective cohort study using a national inpatient database in Japan. Hypertens Res. 2021 Feb;44(2):232-238. doi: 10.1038/s41440-020-00537-6. Epub 2020 Sep 8. PMID: 32901155.
  33. Naruse K, Shigemi D, Hashiguchi M, Imamura M, Yasunaga H, Arai T; Advanced Life Support in Obstetrics (ALSO)-Japan Research Group. Placental abruption in each hypertensive disorders of pregnancy phenotype: a retrospective cohort study using a national inpatient database in Japan. Hypertens Res. 2021 Feb;44(2):232-238. doi: 10.1038/s41440-020-00537-6. Epub 2020 Sep 8. PMID: 32901155.
  34. Beer RJ, Cnattingius S, Susser ES, Villamor E. Associations of preterm birth, small-for-gestational age, preeclampsia and placental abruption with attention-deficit/hyperactivity disorder in the offspring: Nationwide cohort and sibling-controlled studies. Acta Paediatr. 2022 Aug;111(8):1546-1555. doi: 10.1111/apa.16375. Epub 2022 May 3. PMID: 35485179; PMCID: PMC9544732.
  35. Li Y, Tian Y, Liu N, Chen Y, Wu F. Analysis of 62 placental abruption cases: Risk factors and clinical outcomes. Taiwan J Obstet Gynecol. 2019 Mar;58(2):223-226. doi: 10.1016/j.tjog.2019.01.010. PMID: 30910143.
  36. Osman T, Keshk EA, Alghamdi AAS, Alghamdi MAA, Alghamdi MAA, Alzahrani AA, Alghamdi KN, Alzahrani YA, Alghamdi AA, Alghamdi RA. Awareness of Preeclampsia and Its Associated Factors Among Women in Al Baha Region, Saudi Arabia. Cureus. 2023 Nov 19;15(11):e49038. doi: 10.7759/cureus.49038. PMID: 38116365; PMCID: PMC10729291.
  37. Parker SE, Werler MM, Gissler M, Tikkanen M, Ananth CV. Placental abruption and subsequent risk of pre-eclampsia: a population-based case-control study. Paediatr Perinat Epidemiol. 2015 May;29(3):211-9. doi: 10.1111/ppe.12184. Epub 2015 Mar 11. PMID: 25761509; PMCID: PMC4400232.
  38. Spinillo A, Cesari S, Bariselli S, Tzialla C, Gardella B, Silini EM. Placental lesions associated with oligohydramnios in fetal growth restricted (FGR) pregnancies. Placenta. 2015 May;36(5):538-44. doi: 10.1016/j.placenta.2015.02.007. Epub 2015 Feb 23. PMID: 25735841.
  39. Rabinovich A, Holtzman K, Shoham-Vardi I, Mazor M, Erez O. Oligohydramnios is an independent risk factor for perinatal morbidity among women with pre-eclampsia who delivered preterm. J Matern Fetal Neonatal Med. 2019 Jun;32(11):1776-1782. doi: 10.1080/14767058.2017.1417377. Epub 2017 Dec 27. PMID: 29237307.

Download Article
Received July15, 2024.
Accepted August 28, 2024.
©2024 International Medical Research and Development Corporation.