GC-Mass Analysis of Ginkgo biloba and Cichorium intybus and their Neuroprotective Effects in a Rat Model of Alzheimer’s Disease

Karrar AR Al-Salim, Areej GH Al-Charak

 
For citation: Al-Salim KAR, Al-Charak AGH. GC-Mass Analysis of Ginkgo biloba and Cichorium intybus and their Neuroprotective Effects in a Rat Model of Alzheimer’s Disease. International Journal of Biomedicine. 2024;14(3):510-515. doi:10.21103/Article14(3)_OA20
 
Originally published September 6, 2024

Abstract: 

Background: Globally, the records of people who have dementia are rising, which hurts communities and healthcare systems. The current study aimed to determine whether Ginkgo biloba (GB) and Cichorium intybus (CI) could relieve Alzheimer's disease (AD) by suppressing oxidative stress and neuroinflammation.
Methods and Results: Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the phytoconstituents of GB and CI hydroalcoholic extracts. ELISA assay was used for the assessment of acetylcholinesterase (AChE) and dopamine in the brain tissue and SOD and TNF-α in blood serum.
Forty male albino rats were randomly divided into five groups (eight rats in each group). Group 1 (negative control) rats received only a baseline diet and distilled water. Alzheimer's disease (AD) was induced in Group 2 rats by oral administration (100 mg/kg bw) of AlCl3 dissolved in distilled water daily for 28 days (positive control). Rats in Group 3 were orally supplemented concomitantly with both Ginkgo biloba extract (GBE) (120 mg/kg bw) once daily for 28 days and AlCl3 (100 mg/kg bw). Rats in Group 4 were orally supplemented concomitantly with both Cichorium intybus extract (CIE) (500 mg/kg bw) once daily for 28 days and AlCl3 (100 mg/kg bw). Rats in Group 5 were given 120 mg/kg of GBE and 500 mg/kg of CIE orally for 28 days with oral supplementation of AlCl3 (100 mg/kg bw). In Groups 3-5, GBE and CIE were given one hour before AlCl3 administration.
The results showed that GBE suppressed levels of brain AChE and serum TNF-α in AlCl3-induced AD. Hydroalcoholic extract of CI improved levels of brain dopamine and serum SOD in AlCl3-induced AD. Moreover, the combined administration of GBE and CIE significantly suppressed the levels of brain AChE and serum TNF-α and improved the level of serum SOD in AlCl3-induced AD, leading to the achievement of negative control values.
Conclusion: The combined use of GBE and CIE can lower the toxic impacts of aluminum chloride on brain neuronal structures, neurotransmission, and oxidative stress it causes, suppressing the development of AlCl3-induced AD.

Keywords: 
Alzheimer's disease • rat • Gingko biloba • Cichorium intybus • brain • oxidative stress
References: 
  1. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010 Jan;9(1):119-28. doi: 10.1016/S1474-4422(09)70299-6. PMID: 20083042; PMCID: PMC2819840.‏
  2. Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers. 2021 May 13;7(1):33. doi: 10.1038/s41572-021-00269-y. PMID: 33986301; PMCID: PMC8574196.
  3. Chen X, Zhang M, Ahmed M, Surapaneni KM, Veeraraghavan VP, Arulselvan P. Neuroprotective effects of ononin against the aluminium chloride-induced Alzheimer's disease in rats. Saudi J Biol Sci. 2021 Aug;28(8):4232-4239. doi: 10.1016/j.sjbs.2021.06.031. Epub 2021 Jun 15. PMID: 34354404; PMCID: PMC8325004.
  4. Choi H, Kim HJ, Yang J, Chae S, Lee W, Chung S, Kim J, Choi H, Song H, Lee CK, Jun JH, Lee YJ, Lee K, Kim S, Sim HR, Choi YI, Ryu KH, Park JC, Lee D, Han SH, Hwang D, Kyung J, Mook-Jung I. Acetylation changes tau interactome to degrade tau in Alzheimer's disease animal and organoid models. Aging Cell. 2020 Jan;19(1):e13081. doi: 10.1111/acel.13081. Epub 2019 Nov 25. PMID: 31763743; PMCID: PMC6974726.
  5. Sahana S, Kumar R, Nag S, Paul R, Chatterjee I, Guha N. A Review On Alzheimer Disease And Future Prospects.‏ World Journal of Pharmacy and Pharmaceutical Sciences. 2020. DOI: 10.20959/wjpps20209-17166
  6. Holtzman DM, Morris JC, Goate AM. Alzheimer's disease: the challenge of the second century. Sci Transl Med. 2011 Apr 6;3(77):77sr1. doi: 10.1126/scitranslmed.3002369. PMID: 21471435; PMCID: PMC3130546.
  7. Al-Ameedi AI, Ayad ZM, Mohammed WA, Hajwal SK. Ginkgo biloba extract’s efficacy to mitigate the genotoxicity that hydroxyurea induces in mice. Adv Anim Vet Sci. 2023.11(4),552-557.‏
  8. Xie L, Zhu Q, Lu J. Can We Use Ginkgo biloba Extract to Treat Alzheimer's Disease? Lessons from Preclinical and Clinical Studies. Cells. 2022 Jan 29;11(3):479. doi: 10.3390/cells11030479. PMID: 35159288; PMCID: PMC8833923.
  9. Chen JY, Zhu Q, Zhang S, OuYang D, Lu JH. Resveratrol in experimental Alzheimer's disease models: A systematic review of preclinical studies. Pharmacol Res. 2019 Dec;150:104476. doi: 10.1016/j.phrs.2019.104476. Epub 2019 Oct 9. PMID: 31605783.
  10. Ward CP, Redd K, Williams BM, Caler JR, Luo Y, McCoy JG. Ginkgo biloba extract: cognitive enhancer or antistress buffer. Pharmacol Biochem Behav. 2002 Jul;72(4):913-22. doi: 10.1016/s0091-3057(02)00768-2. PMID: 12062581.
  11. Tian X, Wang J, Dai J, Yang L, Zhang L, Shen S, Huang P. Hyperbaric oxygen and Ginkgo Biloba extract inhibit Aβ25-35-induced toxicity and oxidative stress in vivo: a potential role in Alzheimer's disease. Int J Neurosci. 2012 Oct;122(10):563-9. doi: 10.3109/00207454.2012.690797. Epub 2012 Jun 14. PMID: 22563944.
  12. Janda K, Gutowska I, Geszke-Moritz M, Jakubczyk K. The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties-A Review. Molecules. 2021 Mar 23;26(6):1814. doi: 10.3390/molecules26061814. PMID: 33807029; PMCID: PMC8005178.
  13. Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology. 2020 Nov 23;18(1):172. doi: 10.1186/s12951-020-00704-4. PMID: 33225973; PMCID: PMC7682049.
  14. Liaquat L, Sadir S, Batool Z, Tabassum S, Shahzad S, Afzal A, Haider S. Acute aluminum chloride toxicity revisited: Study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sci. 2019 Jan 15;217:202-211. doi: 10.1016/j.lfs.2018.12.009. Epub 2018 Dec 5. PMID: 30528774.
  15. Rees S, Harborne J. Flavonoids and other phenolics of Cichorium and related members of the Lactuceae (Compositae). Botanical Journal of the Linnean Society. 1984;89.4: 313-319..
  16. Vaz M, Silvestre S. Alzheimer's disease: Recent treatment strategies. Eur J Pharmacol. 2020 Nov 15;887:173554. doi: 10.1016/j.ejphar.2020.173554. Epub 2020 Sep 15. PMID: 32941929.
  17. Noori S, Azmat M, Mahboob T. Study on antioxidant effects of cinnamon and garlic extract in liver, kidney and heart tissue of rat. Biosci Res. 2012;9.1:17-22.‏
  18. Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN, Amom Z, Jagadeesan S, Adenan MI, Mohd Moklas MA. Protective effect of Centella asiatica against D-galactose and aluminium chloride induced rats: Behavioral and ultrastructural approaches. Biomed Pharmacother. 2019 Jan;109:853-864. doi: 10.1016/j.biopha.2018.10.111. Epub 2018 Nov 5. PMID: 30551539.
  19. Kumar V, Bal A, Gill KD. Aluminium-induced oxidative DNA damage recognition and cell-cycle disruption in different regions of rat brain. Toxicology. 2009 Oct 29;264(3):137-44. doi: 10.1016/j.tox.2009.05.011. Epub 2009 May 21. PMID: 19464335.
  20. Saba K, Rajnala N, Veeraiah P, Tiwari V, Rana RK, Lakhotia SC, Patel AB. Energetics of Excitatory and Inhibitory Neurotransmission in Aluminum Chloride Model of Alzheimer's Disease: Reversal of Behavioral and Metabolic Deficits by Rasa Sindoor. Front Mol Neurosci. 2017 Oct 17;10:323. doi: 10.3389/fnmol.2017.00323. PMID: 29089867; PMCID: PMC5651029.
  21. da Silva VC, de Araújo AA, de Souza Araújo DF, Souza Lima MCJ, Vasconcelos RC, de Araújo Júnior RF, Langasnner SMZ, de Freitas Fernandes Pedrosa M, de Medeiros CACX, Guerra GCB. Intestinal Anti-Inflammatory Activity of the Aqueous Extract from Ipomoea asarifolia in DNBS-Induced Colitis in Rats. Int J Mol Sci. 2018 Dec 12;19(12):4016. doi: 10.3390/ijms19124016. PMID: 30545135; PMCID: PMC6321343.
  22. Kim GH, Kim JE, Rhie SJ, Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp Neurobiol. 2015 Dec;24(4):325-40. doi: 10.5607/en.2015.24.4.325. Epub 2015 Oct 12. PMID: 26713080; PMCID: PMC4688332.
  23. Qu M, Jiang Z, Liao Y, Song Z, Nan X. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons. Neurochem Res. 2016 Jun;41(6):1354-64. doi: 10.1007/s11064-016-1837-9. Epub 2016 Jan 27. PMID: 26816095.
  24. Herrschaft H, Nacu A, Likhachev S, Sholomov I, Hoerr R, Schlaefke S. Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: a randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res. 2012 Jun;46(6):716-23. doi: 10.1016/j.jpsychires.2012.03.003. Epub 2012 Mar 27. PMID: 22459264.
  25. Abbas ZK, Saggu S, Sakeran MI, Zidan N, Rehman H, Ansari AA. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J Biol Sci. 2015 May;22(3):322-6. doi: 10.1016/j.sjbs.2014.11.015. Epub 2014 Nov 20. PMID: 25972754; PMCID: PMC4423657.
  26. Jančić D, Todorović V, Sircelj H, Dodevska M, Beljkas B, Znidarcić D, Šobajić S. Biologically active compounds and antioxidant capacity of Cichorium intybus L. leaves from Montenegro. Italian Journal of Food Science. 2017;29(4):627-43.
  27. Shi C, Zhao L, Zhu B, Li Q, Yew DT, Yao Z, Xu J. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem Biol Interact. 2009 Sep 14;181(1):115-23. doi: 10.1016/j.cbi.2009.05.010. Epub 2009 May 21. PMID: 19464278.
  28. Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and Antioxidant Effect of Ginkgo biloba Extract Against AD and Other Neurological Disorders. Neurotherapeutics. 2019 Jul;16(3):666-674. doi: 10.1007/s13311-019-00767-8. PMID: 31376068; PMCID: PMC6694352.
  29. Cheng XJ, Gu JX, Pang YP, Liu J, Xu T, Li XR, Hua YZ, Newell KA, Huang XF, Yu Y, Liu Y. Tacrine-Hydrogen Sulfide Donor Hybrid Ameliorates Cognitive Impairment in the Aluminum Chloride Mouse Model of Alzheimer's Disease. ACS Chem Neurosci. 2019 Aug 21;10(8):3500-3509. doi: 10.1021/acschemneuro.9b00120. Epub 2019 Jun 20. PMID: 31244052.
  30. Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011 Sep;155(3):219-29. doi: 10.5507/bp.2011.036. PMID: 22286807.
  31. Amberla K, Nordberg A, Viitanen M, Winblad B. Long-term treatment with tacrine (THA) in Alzheimer's disease--evaluation of neuropsychological data. Acta Neurol Scand Suppl. 1993;149:55-7. doi: 10.1111/j.1600-0404.1993.tb04257.x. PMID: 8128841.
  32. Zatta P, Ibn-Lkhayat-Idrissi M, Zambenedetti P, Kilyen M, Kiss T. In vivo and in vitro effects of aluminum on the activity of mouse brain acetylcholinesterase. Brain Res Bull. 2002 Oct 15;59(1):41-5. doi: 10.1016/s0361-9230(02)00836-5. PMID: 12372547.
  33. Trovato Salinaro A, Pennisi M, Di Paola R, Scuto M, Crupi R, Cambria MT, Ontario ML, Tomasello M, Uva M, Maiolino L, Calabrese EJ, Cuzzocrea S, Calabrese V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer's disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun Ageing. 2018 Feb 14;15:8. doi: 10.1186/s12979-017-0108-1. PMID: 29456585; PMCID: PMC5813410.
  34. Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol. 2014 Oct;50(2):534-44. doi: 10.1007/s12035-014-8657-1. Epub 2014 Feb 25. PMID: 24567119; PMCID: PMC4182618.
  35. Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry. 2010 Nov 15;68(10):930-41. doi: 10.1016/j.biopsych.2010.06.012. Epub 2010 Aug 8. PMID: 20692646.
  36. Zhao M, Cribbs DH, Anderson AJ, Cummings BJ, Su JH, Wasserman AJ, Cotman CW. The induction of the TNFalpha death domain signaling pathway in Alzheimer's disease brain. Neurochem Res. 2003 Feb;28(2):307-18. doi: 10.1023/a:1022337519035. PMID: 12608703.
  37. Pyo H, Jou I, Jung S, Hong S, Joe EH. Mitogen-activated protein kinases activated by lipopolysaccharide and beta-amyloid in cultured rat microglia. Neuroreport. 1998 Mar 30;9(5):871-4. doi: 10.1097/00001756-199803300-00020. PMID: 9579682.
  38. Dhawan G, Floden AM, Combs CK. Amyloid-β oligomers stimulate microglia through a tyrosine kinase dependent mechanism. Neurobiol Aging. 2012 Oct;33(10):2247-61. doi: 10.1016/j.neurobiolaging.2011.10.027. Epub 2011 Dec 1. PMID: 22133278; PMCID: PMC3294077.
  39. Lue LF, Walker DG, Rogers J. Modeling microglial activation in Alzheimer's disease with human postmortem microglial cultures. Neurobiol Aging. 2001 Nov-Dec;22(6):945-56. doi: 10.1016/s0197-4580(01)00311-6. PMID: 11755003.

Download Article
Received June 20, 2024.
Accepted August 15, 2024.
©2024 International Medical Research and Development Corporation.