Investigating the Two-Way Interaction Effect of Diet and Lifestyle Factors on Liver Fat Levels: A Controlled Spectroscopic Analysis

Halima Hawesa, Maymounh Ayed Alonzi, Norah Abdulsalam Almarzuqi, Alaa Kaid Aloudah, Noura Abdullah Alsubaie, Samia Asaad Alenezi, Tahani Hamoud Alotaibi, Ghadah Ibrahim Aleid, Haya Abdulrahman AlShegri

 
For citation: Hawesa H, Alonzi MA, Almarzuqi NA, Aloudah AK, Alsubaie NA, Alenezi SA, Alotaibi TH, Aleid GI, AlShegri HA. Investigating the Two-Way Interaction Effect of Diet and Lifestyle Factors on Liver Fat Levels: A Controlled Spectroscopic Analysis. International Journal of Biomedicine. 2024;14(4):649-653. doi:10.21103/Article14(4)_OA18
 
Originally published December 5, 2024
 

Abstract: 

Background: Changes in normal liver lipid levels indicate various diseases closely related to dietary and lifestyle factors. Magnetic resonance spectroscopy (MRS) is a reliable, advanced, and noninvasive method for estimating these levels. This study aimed to evaluate the interaction effect of diet and lifestyle factors on liver lipid levels, as measured by MRS, among female students.
Methods and Results: This cross-sectional study included 29 female students from the Department of Radiological Sciences who underwent MRS to evaluate liver lipid levels and correlate these levels with lifestyle factors assessed by a questionnaire.
SPSS two-way ANCOVA was applied to the acquired data. Diet and exercise had a significant interaction effect on the liver lipid levels after adjusting for gender and age (P=0.036). The interaction between diet and other factors such as caffeinated drinks, family history, smoking, and body mass index (BMI) with lipid levels did not reach significant levels (P>0.05).
Conclusion: The results obtained support the strong interaction effect of diet and exercise on liver fat levels. Adopting a healthy lifestyle characterized by healthy food choices and regular exercise may help maintain normal liver fat levels and reduce the risk of HS and NAFLD in young women.

Keywords: 
magnetic resonance spectroscopy • lifestyle factors • non-alcoholic hepatic steatosis • fatty liver disease
References: 
  1. Gray's anatomy: the anatomical basis of clinical practice. Standring, Susan, editor. New York : Elsevier Limited, 2016.
  2. Ulbrich EJ, Fischer MA, Manoliu A, Marcon M, Luechinger R, Nanz D, Reiner CS. Age- and Gender Dependent Liver Fat Content in a Healthy Normal BMI Population as Quantified by Fat-Water Separating DIXON MR Imaging. PLoS One. 2015 Nov 10;10(11):e0141691. doi: 10.1371/journal.pone.0141691. PMID: 26554709; PMCID: PMC4640707.
  3. Petäjä EM, Yki-Järvinen H. Definitions of Normal Liver Fat and the Association of Insulin Sensitivity with Acquired and Genetic NAFLD-A Systematic Review. Int J Mol Sci. 2016 Apr 27;17(5):633. doi: 10.3390/ijms17050633. PMID: 27128911; PMCID: PMC4881459.
  4. Torres-Peña JD, Arenas-de Larriva AP, Alcala-Diaz JF, Lopez-Miranda J, Delgado-Lista J. Different Dietary Approaches, Non-Alcoholic Fatty Liver Disease and Cardiovascular Disease: A Literature Review. Nutrients. 2023 Mar 20;15(6):1483. doi: 10.3390/nu15061483. PMID: 36986213; PMCID: PMC10058124.
  5. Hallsworth K, Adams LA. Lifestyle modification in NAFLD/NASH: Facts and figures. JHEP Rep. 2019 Nov 5;1(6):468-479. doi: 10.1016/j.jhepr.2019.10.008. PMID: 32039399; PMCID: PMC7005657.
  6. Ullah R, Rauf N, Nabi G, Ullah H, Shen Y, Zhou YD, Fu J. Role of Nutrition in the Pathogenesis and Prevention of Non-alcoholic Fatty Liver Disease: Recent Updates. Int J Biol Sci. 2019 Jan 1;15(2):265-276. doi: 10.7150/ijbs.30121. PMID: 30745819; PMCID: PMC6367556.
  7. Han AL. Association between Non-Alcoholic Fatty Liver Disease and Dietary Habits, Stress, and Health-Related Quality of Life in Korean Adults. Nutrients. 2020 May 27;12(6):1555. doi: 10.3390/nu12061555. PMID: 32471118; PMCID: PMC7352638.
  8. Pasanta D, Htun KT, Pan J, Tungjai M, Kaewjaeng S, Kim H, Kaewkhao J, Kothan S. Magnetic Resonance Spectroscopy of Hepatic Fat from Fundamental to Clinical Applications. Diagnostics (Basel). 2021 May 7;11(5):842. doi: 10.3390/diagnostics11050842. PMID: 34067193; PMCID: PMC8151733.
  9. de Alwis NM, Anstee QM, Day CP. How to Diagnose Nonalcoholic Fatty Liver Disease. Dig Dis. 2016;34 Suppl 1:19-26. doi: 10.1159/000447277. Epub 2016 Aug 22. PMID: 27547937.
  10. Manias KA, Peet A. What is MR spectroscopy? Arch Dis Child Educ Pract Ed. 2018 Aug;103(4):213-216. doi: 10.1136/archdischild-2017-312839. Epub 2017 Aug 26. PMID: 28844055.
  11. MRI From Picture to Proton: 2nd ed. AJNR Am J Neuroradiol. 2008 Jun;29(6):e50. doi: 10.3174/ajnr.A0980. PMCID: PMC8118846.
  12. Tognarelli JM, Dawood M, Shariff MI, Grover VP, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ. Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015 Dec;5(4):320-8. doi: 10.1016/j.jceh.2015.10.006. Epub 2015 Nov 12. PMID: 26900274; PMCID: PMC4723643.
  13. Öz G, Deelchand DK, Wijnen JP, Mlynárik V, Xin L, Mekle R, Noeske R, Scheenen TWJ, Tkáč I; Experts' Working Group on Advanced Single Voxel 1H MRS. Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations. NMR Biomed. 2020 Jan 10:e4236. doi: 10.1002/nbm.4236. Epub ahead of print. PMID: 31922301; PMCID: PMC7347431.
  14. Zhang Y, Taub E, Salibi N, Uswatte G, Maudsley AA, Sheriff S, Womble B, Mark VW, Knight DC. Comparison of reproducibility of single voxel spectroscopy and whole-brain magnetic resonance spectroscopy imaging at 3T. NMR Biomed. 2018 Apr;31(4):e3898. doi: 10.1002/nbm.3898. Epub 2018 Feb 13. PMID: 29436038; PMCID: PMC6291009.
  15. de León SDC, Jiménez JE, Peña-Quintana L, González-Martín JM, Nóvoa-Medina Y. The Healthy Lifestyle Habits Screening Questionnaire: A pilot study in the Canary Islands. Endocrinol Diabetes Nutr (Engl Ed). 2023 May;70(5):335-346. doi: 10.1016/j.endien.2022.11.022. PMID: 37263733.
  16. Two-way ANCOVA in SPSS Statistics (page 3) (no date) Two-way ANCOVA in SPSS Statistics - Step-by-step procedure including testing of assumptions | Laerd Statistics. Available at https://statistics.laerd.com/spss-tutorials/two-way-ancova-using-spss-statistics-3.php  (Accessed: 08 July 2024).
  17. Abe RAM, Masroor A, Khorochkov A, Prieto J, Singh KB, Nnadozie MC, Abdal M, Shrestha N, Mohammed L. The Role of Vitamins in Non-Alcoholic Fatty Liver Disease: A Systematic Review. Cureus. 2021 Aug 3;13(8):e16855. doi: 10.7759/cureus.16855. PMID: 34522493; PMCID: PMC8424975.
  18. Luukkonen PK, Sädevirta S, Zhou Y, Kayser B, Ali A, Ahonen L, Lallukka S, Pelloux V, Gaggini M, Jian C, Hakkarainen A, Lundbom N, Gylling H, Salonen A, Orešič M, Hyötyläinen T, Orho-Melander M, Rissanen A, Gastaldelli A, Clément K, Hodson L, Yki-Järvinen H. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care. 2018 Aug;41(8):1732-1739. doi: 10.2337/dc18-0071. Epub 2018 May 29. PMID: 29844096; PMCID: PMC7082640.
  19. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018 May;68(5):1063-1075. doi: 10.1016/j.jhep.2018.01.019. Epub 2018 Feb 2. PMID: 29408694; PMCID: PMC5893377.
  20. Stine JG, Soriano C, Schreibman I, Rivas G, Hummer B, Yoo E, Schmitz K, Sciamanna C. Breaking Down Barriers to Physical Activity in Patients with Nonalcoholic Fatty Liver Disease. Dig Dis Sci. 2021 Oct;66(10):3604-3611. doi: 10.1007/s10620-020-06673-w. Epub 2020 Oct 23. PMID: 33098023; PMCID: PMC10321307.
  21. Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Ann Hepatol. 2021 Jan-Feb;20:100254. doi: 10.1016/j.aohep.2020.08.071. Epub 2020 Sep 10. PMID: 32920163.
  22. Calabrò A, Procopio AC, Primerano F, Larussa T, Luzza F, Di Renzo L, et al. Beneficial effects of coffee in non-alcoholic fatty liver disease: a narrative review. Hepatoma Res. 2020;2020. doi: 10.20517/2394-5079.2020.63.
  23. Loomis AK, Kabadi S, Preiss D, Hyde C, Bonato V, St Louis M, Desai J, Gill JM, Welsh P, Waterworth D, Sattar N. Body Mass Index and Risk of Nonalcoholic Fatty Liver Disease: Two Electronic Health Record Prospective Studies. J Clin Endocrinol Metab. 2016 Mar;101(3):945-52. doi: 10.1210/jc.2015-3444. Epub 2015 Dec 16. PMID: 26672639; PMCID: PMC4803162.
  24. Pasanta D, Tungjai M, Chancharunee S, Sajomsang W, Kothan S. Body mass index and its effects on liver fat content in overweight and obese young adults by proton magnetic resonance spectroscopy technique. World J Hepatol. 2018 Dec 27;10(12):924-933. doi: 10.4254/wjh.v10.i12.924. PMID: 30631397; PMCID: PMC6323521.
  25. Long MT, Gurary EB, Massaro JM, Ma J, Hoffmann U, Chung RT, Benjamin EJ, Loomba R. Parental non-alcoholic fatty liver disease increases risk of non-alcoholic fatty liver disease in offspring. Liver Int. 2019 Apr;39(4):740-747. doi: 10.1111/liv.13956. Epub 2018 Sep 25. PMID: 30179294; PMCID: PMC6758911.

Download Article
Received September 17, 2024.
Accepted October 21, 2024.
©2024 International Medical Research and Development Corporation.