Left Ventricular Mechanical Dispersion in the Development of Ventricular Arrhythmia in Patients after Q-Wave Myocardial Infarction

L. T. Ilkhomova, F. M. Bekmetova, Kh. G. Fozilov, N. B. Tursunova, S. Ya. Abdullaeva, M. Khotamova, Sh. N. Doniyorov, N. A. Usmonova, S. I. Bekmetova

 
For citation: Ilkhomova LT, Bekmetova FM, Fozilov KhG, Tursunova NB, Abdullaeva SYa, Khotamova M, Doniyorov ShN, Usmonova NA, Bekmetova SI. Left Ventricular Mechanical Dispersion in the Development of Ventricular Arrhythmia in Patients after Q-Wave Myocardial Infarction. International Journal of Biomedicine. 2024;14(4):558-562. doi:10.21103/Article14(4)_OA3
 
Originally published December 5, 2024
 

Abstract: 

Background: Ventricular arrhythmias (VA) can be life-threatening complications of myocardial infarction (MI). In coronary artery disease (CAD), the main substrates of arrhythmia are fibrous areas of the ventricular myocardium formed after a previous MI. This study aimed to evaluate the hypothesis that left ventricular mechanical dispersion (LVMD) can identify subjects at high risk for developing VA among post-MI patients with left ventricular ejection fractions (LVEFs) >40%.
Methods and Results: The study included 100 CAD patients (mean age of 62.7±9.61 years) with a history of acute Q-wave MI no earlier than two months. According to the Lown grading system, all patients (59% men and 41% women) were divided into two groups based on the presence of premature ventricular contractions (PVCs). Group 1 consisted of 58 patients with PVCs, and Group 2 included 42 patients without PVCs. All patients underwent general clinical examination, biochemical blood tests, and functional methods (daily ECG monitoring, standard transthoracic two-dimensional echocardiography [TTE] with ECG synchronization, 2D-STE with the assessment of global longitudinal strain [GLS] and left ventricular mechanical dispersion [LVMD]).
In the general patient group, analysis of the two-dimensional TTE parameters indicated relative preservation of the LV structural and functional parameters, except for a slight decrease in the systolic function with a mildly abnormal LVEF of 45.9±11.5%. A comparative analysis of clinical and demographic indicators in groups with and without PVCs demonstrated relative homogeneity and comparability regarding average age, the duration of CAD and hypertension, lipid metabolism indicators, and structural and functional parameters of the left ventricle and left atrium (P>0.05).
We studied the deformation properties of the left ventricle in the longitudinal direction in three apical views. The integral average GLS value was -12.98±3.34% in the group with PVCs and -13.49±3.43% in the group without PVCs (P=0.458). The LVMD was significantly higher in patients with PVCs than those without PVCs: 34.07±9.3 ms versus 9.8±5.54 ms (P=0.000). The analysis of the 2D-STE parameters showed the absence of statistically significant differences in the LVGLS (F=0.8585, P=0.4655) between the subgroups, taking into account the Lown grading system for PVCs, but significant differences in the LVMD were noted. The minimal mean LVMD value (9.3±5.57 ms) was revealed in the group with PVC Grade 0. LVMD increased with the increasing the PVC grade, reaching maximum values in the subgroup with PVC Grades IV- V: 15±8.37 ms in the subgroup with PVC Grades I-II, 34.0±6.30 ms in the subgroup with PVC Grade III, 49.8±12.8 ms in the subgroup with PVC Grades IV-V (F=129.6136, P=0.0000).
Conclusion: Left ventricular mechanical dispersion, determined by 2-D STE, is an important prognostic marker related to the development of ventricular arrhythmia in post-MI patients with intermediate LVEF.

Keywords: 
myocardial infarction • ventricular arrhythmia • mechanical dispersion • speckle tracking echocardiography • global longitudinal strain
References: 
  1. Tse G. Mechanisms of cardiac arrhythmias. J Arrhythm. 2016 Apr;32(2):75-81. doi: 10.1016/j.joa.2015.11.003. Epub 2015 Dec 17. PMID: 27092186; PMCID: PMC4823581.
  2. Tfelt-Hansen J, Winkel BG, de Riva M, Zeppenfeld K. The '10 commandments' for the 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2023 Jan 14;44(3):176-177. doi: 10.1093/eurheartj/ehac699. PMID: 36477551.
  3. Golukhova EZ, Gromova OI, Bulaeva NI, Bokeria LA. [Sudden Cardiac Death in Patients With Ischemic Heart Disease: From Mechanisms to Clinical Practice]. Kardiologiia. 2017 Dec;57(12):73-81. Russian. PMID: 29466214.
  4. Josephson ME, Horowitz LN, Farshidi A, Spielman SR, Michelson EL, Greenspan AM. Recurrent sustained ventricular tachycardia. 4. Pleomorphism. Circulation. 1979 Mar;59(3):459-68. doi: 10.1161/01.cir.59.3.459. PMID: 761327.
  5. Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev. 1999 Jul;79(3):917-1017. doi: 10.1152/physrev.1999.79.3.917. PMID: 10390520.
  6. Coronel R, Wilms-Schopman FJ, Dekker LR, Janse MJ. Heterogeneities in [K+]o and TQ potential and the inducibility of ventricular fibrillation during acute regional ischemia in the isolated perfused porcine heart. Circulation. 1995 Jul 1;92(1):120-9. doi: 10.1161/01.cir.92.1.120. PMID: 7788906.
  7. Arnar DO, Bullinga JR, Martins JB. Role of the Purkinje system in spontaneous ventricular tachycardia during acute ischemia in a canine model. Circulation. 1997 Oct 7;96(7):2421-9. doi: 10.1161/01.cir.96.7.2421. PMID: 9337219.
  8. Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005 Sep;115(9):2305-15. doi: 10.1172/JCI26381. PMID: 16138184; PMCID: PMC1193893.
  9. Fozilov KhG, Shek AB, Bekmetova FM, Alieva RB, Mukhamedova MG, Mullabaeva GU, et al. Features of the deformation properties of the left ventricle of a patient with damage to the coronary artery. Clinical and Experimental Surgery. Journal named after academician B.V. Petrovsky. 2021; 9(3):118–124. doi:10.33029/2308-1198-2021-9-3-118-124.
  10. Bekmetova FM, Fozilov KhG, Doniyorov ShN, Alieva RB, Mukhamedova MG, I’lkhomova LT, et al. Relationship between the Deformation Properties of the Left Ventricle and the Severity of Coronary Atherosclerosis in Patients with Coronary Artery Disease. International Journal of Biomedicine. 2021;11(2):131-136. doi:10.21103/Article11(2)_OA1
  11. Bekmetova F.M., Yuldoshev N.A., Fozilov H.G., Bekbulatova R.Sh., Abdullayeva S.Ya., Khoshimov Sh.U., Doniyorov Sh.N., Karimov B.S., Ilkhomova L.T. The Correlation Between Indicators of Time Intervals of Left Ventricular Activity and Markers of Myocardial Damage and Coronary Artery Atherosclerosis in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Cardiology in Belarus. 2023;15(6):791-802. doi: 10.34883/PI.2023.15.6.005
  12. Iwahashi N, Kirigaya J, Gohbara M, Abe T, Horii M, Hanajima Y, Toya N, Takahashi H, Kirigaya H, Minamimoto Y, Kimura Y, Okada K, Matsuzawa Y, Hibi K, Kosuge M, Ebina T, Tamura K, Kimura K. Mechanical dispersion combined with global longitudinal strain estimated by three dimensional speckle tracking in patients with ST elevation myocardial infarction. Int J Cardiol Heart Vasc. 2022 Apr 7;40:101028. doi: 10.1016/j.ijcha.2022.101028. PMID: 35434256; PMCID: PMC9010606.
  13. Haugaa KH, Amlie JP, Berge KE, Leren TP, Smiseth OA, Edvardsen T. Transmural differences in myocardial contraction in long-QT syndrome: mechanical consequences of ion channel dysfunction. Circulation. 2010 Oct 5;122(14):1355-63. doi: 10.1161/CIRCULATIONAHA.110.960377. Epub 2010 Sep 20. PMID: 20855658.
  14. Haugaa KH, Smedsrud MK, Steen T, Kongsgaard E, Loennechen JP, Skjaerpe T, Voigt JU, Willems R, Smith G, Smiseth OA, Amlie JP, Edvardsen T. Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging. 2010 Mar;3(3):247-56. doi: 10.1016/j.jcmg.2009.11.012. PMID: 20223421.
  15. Haugaa KH, Grenne BL, Eek CH, Ersbøll M, Valeur N, Svendsen JH, Florian A, Sjøli B, Brunvand H, Køber L, Voigt JU, Desmet W, Smiseth OA, Edvardsen T. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging. 2013 Aug;6(8):841-50. doi: 10.1016/j.jcmg.2013.03.005. Epub 2013 Jul 10. PMID: 23850251
  16. Lown B, Wolf M. Approaches to sudden death from coronary heart disease. Circulation. 1971 Jul;44(1):130-42. doi: 10.1161/01.cir.44.1.130. PMID: 4104697.
  17. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015 Jan;28(1):1-39.e14. doi: 10.1016/j.echo.2014.10.003. PMID: 25559473.
  18. Ersbøll M, Valeur N, Mogensen UM, Andersen MJ, Møller JE, Velazquez EJ, Hassager C, Søgaard P, Køber L. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013 Jun 11;61(23):2365-73. doi: 10.1016/j.jacc.2013.02.061. Epub 2013 Apr 3. PMID: 23563128.
  19. van der Bijl P, Khidir MJH, Leung M, Yilmaz D, Mertens B, Ajmone Marsan N, Delgado V, Bax JJ. Reduced left ventricular mechanical dispersion at 6 months follow-up after cardiac resynchronization therapy is associated with superior long-term outcome. Heart Rhythm. 2018 Nov;15(11):1683-1689. doi: 10.1016/j.hrthm.2018.05.005. Epub 2018 May 9. PMID: 29753023.

Download Article
Received August 7, 2024.
Accepted September 30, 2024.
©2024 International Medical Research and Development Corporation.