Can Plethysmography Identify Earlier Lung Function Changes in Asthmatic Children?

Sonila Borici, Anxhela Gurakuqi, Ilir Akshija, Luljeta Serbo

 
For citation: Borici S, Gurakuqi A, Akshija I, Serbo L. Can Plethysmography Identify Earlier Lung Function Changes in Asthmatic Children? International Journal of Biomedicine. 2024;14(4):569-574. doi:10.21103/Article14(4)_OA5
 
Originally published December 5, 2024
 

Abstract: 

Background: Although in recent years, it has been noted that spirometry provides little information about lung function in children with asthma, as spirometry is normal in most cases, international guidelines still recommend spirometry for diagnosing and monitoring children with asthma. Spirometry measures dynamic lung volumes, while plethysmography measures static lung volumes. The aim of this study was to evaluate the role of plethysmography in identifying functional phenotypes in children with asthma.
Methods and Results: This observational study included 93 patients (boys [66.7%] and girls [33.3%], mean age of 8.6±3.1years) diagnosed with bronchial asthma (GINA, 2020). All patients were classified according to asthma severity. All patients underwent spirometry and plethysmography measurements. The reference values of functional parameters were based on Zapletal data. Air trapping was detected in 78.5% of patients according to residual volume (RV) data, 77.4% of patients according to RV/total lung capacity [TLC] data, 58% of patients according to functional reserve capacity [FRC]/TLC data, and 57% according to FRC data. Only 26.9% of patients, according to TLC, had distension (hyperinflation). 12.3% of the patients had the so-called pseudo-restriction phenotype or small airway obstruction syndrome, which involves increased RV, decreased FVC, and normal TLC.
There was no statistically significant relationship between RV and FEV1 (r=-0.104, P=0.325). A weak negative correlation (r=-0.319, P<0.05) was found between RV/TLC and FVC. A weak negative correlation was determined between RV and age (r=-0.252, P=0.046). At the same time, we found a moderate positive correlation between TLC and RV/TLC (r=0.65, P<0.001). We studied the sensitivity and specificity of lung function variables (FEV1, FVC, FEF50, and specific airway resistance [sRaw]) to predict the presence of air trapping (RV>140%pred) and found none of these variables can discriminate the presence of air trapping.
Conclusion: Air trapping is the most common and earliest functional phenotype; thus, it is the most sensitive functional parameter for identifying functional abnormalities in asthma. It is present in all degrees of asthma severity. Spirometric variables cannot detect small-airway obstruction syndrome (air trapping); therefore, a plethysmographic measurement of pulmonary volumes is necessary. Functional physiological phenotypes such as air trapping, restriction, and pseudo-restriction are present in children with asthma and can only be identified by measuring lung volumes.

Keywords: 
asthma • children • plethysmography • air-trapping
References: 
  1. Mahut B, Bokov P, Delclaux C. Abnormalities of plethysmographic lung volumes in asthmatic children. Respir Med. 2010 Jul;104(7):966-71. doi: 10.1016/j.rmed.2010.01.015. Epub 2010 Feb 10. PMID: 20149963.
  2. Marseglia GL, Cirillo I, Vizzaccaro A, Klersy C, Tosca MA, La Rosa M, Marseglia A, Licari A, Leone M, Ciprandi G. Role of forced expiratory flow at 25-75% as an early marker of small airways impairment in subjects with allergic rhinitis. Allergy Asthma Proc. 2007 Jan-Feb;28(1):74-8. doi: 10.2500/aap.2007.28.2920. PMID: 17390762.
  3. Cohen J, Douma WR, ten Hacken NH, Vonk JM, Oudkerk M, Postma DS. Ciclesonide improves measures of small airway involvement in asthma. Eur Respir J. 2008 Jun;31(6):1213-20. doi: 10.1183/09031936.00082407. Epub 2008 Feb 20. PMID: 18287130.
  4. Kraemer R, Meister B, Schaad UB, Rossi E. Reversibility of lung function abnormalities in children with perennial asthma. J Pediatr. 1983 Mar;102(3):347-50. doi: 10.1016/s0022-3476(83)80646-5. PMID: 6827404.
  5. Miller A, Palecki A. Restrictive impairment in patients with asthma. Respir Med. 2007 Feb;101(2):272-6. doi: 10.1016/j.rmed.2006.05.008. Epub 2006 Jun 22. PMID: 16797172.
  6. Stanescu D. Obstructive ventilatory defect with normal forced expiratory volume in one second/vital capacity ratio. Eur Respir J. 2006 May;27(5):1069-70; author reply 1070. doi: 10.1183/09031936.06.00142105. PMID: 16707402.
  7. Stănescu D, Veriter C. A normal FEV1/VC ratio does not exclude airway obstruction. Respiration. 2004 Jul-Aug;71(4):348-52. doi: 10.1159/000079638. PMID: 15316207.
  8. Pellegrino R, Brusasco V. Lung hyperinflation and flow limitation in chronic airway obstruction. Eur Respir J. 1997 Mar;10(3):543-9. PMID: 9072982.
  9. Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol (1985). 1992 Mar;72(3):1016-23. doi: 10.1152/jappl.1992.72.3.1016. PMID: 1568955.
  10. in 't Veen JC, Beekman AJ, Bel EH, Sterk PJ. Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med. 2000 Jun;161(6):1902-6. doi: 10.1164/ajrccm.161.6.9906075. PMID: 10852764.
  11. Perez T, Chanez P, Dusser D, Devillier P. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction. Respir Med. 2013 Nov;107(11):1667-74. doi: 10.1016/j.rmed.2013.08.009. Epub 2013 Aug 27. PMID: 24025779.
  12. Anderson WJ, Zajda E, Lipworth BJ. Are we overlooking persistent small airways dysfunction in community-managed asthma? Ann Allergy Asthma Immunol. 2012 Sep;109(3):185-189.e2. doi: 10.1016/j.anai.2012.06.022. Epub 2012 Jul 18. PMID: 22920073.
  13. Scichilone N, Battaglia S, Taormina S, Modica V, Pozzecco E, Bellia V. Alveolar nitric oxide and asthma control in mild untreated asthma. J Allergy Clin Immunol. 2013 Jun;131(6):1513-7. doi: 10.1016/j.jaci.2013.03.009. Epub 2013 Apr 30. Erratum in: J Allergy Clin Immunol. 2013 Oct;132(4):1015. PMID: 23639306.
  14. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006 Sep;28(3):523-32. doi: 10.1183/09031936.06.00124605. Epub 2006 Apr 12. PMID: 16611654.
  15. Timmins SC, Diba C, Farrow CE, Schoeffel RE, Berend N, Salome CM, King GG. The relationship between airflow obstruction, emphysema extent, and small airways function in COPD. Chest. 2012 Aug;142(2):312-319. doi: 10.1378/chest.11-2169. PMID: 22345381.
  16. GINA. Global Strategy for Asthma Management and Prevention - 2020. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ginasthma.org/wp-content/uploads/2020/04/GINA-2020-full-report_-...
  17. National Asthma Education and Prevention Program Expert Panel (NAEPPEP). Guidelines for the diagnosis and management of asthma: update on selected topics. Bethesda, MD: U.S. Department of Health and Human Services National Heart, Lung, and Blood Institute. NIH Publication No. 02-5075, 2007.
  18. Expert Panel Working Group of the National Heart, Lung, and Blood Institute (NHLBI) administered and coordinated National Asthma Education and Prevention Program Coordinating Committee (NAEPPCC); Cloutier MM, Baptist AP, Blake KV, Brooks EG, Bryant-Stephens T, DiMango E, Dixon AE, Elward KS, Hartert T, Krishnan JA, Lemanske RF Jr, Ouellette DR, Pace WD, Schatz M, Skolnik NS, Stout JW, Teach SJ, Umscheid CA, Walsh CG. 2020 Focused Updates to the Asthma Management Guidelines: A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group. J Allergy Clin Immunol. 2020 Dec;146(6):1217-1270. doi: 10.1016/j.jaci.2020.10.003. Erratum in: J Allergy Clin Immunol. 2021 Apr;147(4):1528-1530. doi: 10.1016/j.jaci.2021.02.010. PMID: 33280709; PMCID: PMC7924476.
  19. Bacharier LB, Strunk RC, Mauger D, White D, Lemanske RF Jr, Sorkness CA. Classifying asthma severity in children: mismatch between symptoms, medication use, and lung function. Am J Respir Crit Care Med. 2004 Aug 15;170(4):426-32. doi: 10.1164/rccm.200308-1178OC. Epub 2004 Jun 1. PMID: 15172893.
  20. Paull K, Covar R, Jain N, Gelfand EW, Spahn JD. Do NHLBI lung function criteria apply to children? A cross-sectional evaluation of childhood asthma at National Jewish Medical and Research Center, 1999-2002. Pediatr Pulmonol. 2005 Apr;39(4):311-7. doi: 10.1002/ppul.20161. PMID: 15678505.
  21. Verini M, Rossi N, Dalfino T, Verrotti A, Di Gioacchino M, Chiarelli F. Lack of correlation between clinical patterns of asthma and airway obstruction. Allergy Asthma Proc. 2001 Sep-Oct;22(5):297-302. PMID: 11715220.
  22. BTS/SIGN British Guideline in the Management of Asthma. British Thoracic Society, SIGN,2019
  23. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G. Standardisation of the measurement of lung volumes. Eur Respir J. 2005 Sep;26(3):511-22. doi: 10.1183/09031936.05.00035005. PMID: 16135736.
  24. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J. 2005 Aug;26(2):319-38. doi: 10.1183/09031936.05.00034805. PMID: 16055882.
  25. Zapletal A, Samánek M. Proudový odpor dýchacích cest a proudový plicní odpor u dĕtí a mladistvých. Normální hodnoty a jejich význam pro hodnocení obstrukce dýchacích cest [Flow resistance of airways and pulmonary flow resistance in children and juveniles. Normal values and their significance for the evaluation of airway obstruction]. Cesk Pediatr. 1977 Sep;32(9):513-22. Czech. PMID: 597942.
  26. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson DC, MacIntyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J. Interpretative strategies for lung function tests. Eur Respir J. 2005 Nov;26(5):948-68. doi: 10.1183/09031936.05.00035205. PMID: 16264058.
  27. Contoli M, Santus P, Papi A. Small airway disease in asthma: pathophysiological and diagnostic considerations. Curr Opin Pulm Med. 2015 Jan;21(1):68-73. doi: 10.1097/MCP.0000000000000122. PMID: 25415403.
  28. Sorkness RL, Bleecker ER, Busse WW, Calhoun WJ, Castro M, Chung KF, Curran-Everett D, Erzurum SC, Gaston BM, Israel E, Jarjour NN, Moore WC, Peters SP, Teague WG, Wenzel SE; National Heart, Lung, and Blood Institute Severe Asthma Research Program. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. J Appl Physiol (1985). 2008 Feb;104(2):394-403. doi: 10.1152/japplphysiol.00329.2007. Epub 2007 Nov 8. PMID: 17991792.
  29. Ueda T, Niimi A, Matsumoto H, Takemura M, Hirai T, Yamaguchi M, Matsuoka H, Jinnai M, Muro S, Chin K, Mishima M. Role of small airways in asthma: investigation using high-resolution computed tomography. J Allergy Clin Immunol. 2006 Nov;118(5):1019-25. doi: 10.1016/j.jaci.2006.07.032. Epub 2006 Sep 12. PMID: 17088124.
  30. Labbé G, Merlin E, Kauffman C, Fauquert JL, Héraud MC, Labbé A. Intérêt de la mesure des volumes pulmonaires par pléthysmographie corporelle dans le suivi de l'asthme de l'enfant [The role of lung volume measurements by plethysmography in the follow-up of asthma in children]. Rev Mal Respir. 2010;27(1):42-8. French. doi: 10.1016/j.rmr.2009.11.002. Epub 2009 Dec 1. PMID: 20146951.
  31. Carroll N, Cooke C, James A. The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur Respir J. 1997 Feb;10(2):292-300. doi: 10.1183/09031936.97.10020292. PMID: 9042623.
  32. Hamid Q, Song Y, Kotsimbos TC, Minshall E, Bai TR, Hegele RG, Hogg JC. Inflammation of small airways in asthma. J Allergy Clin Immunol. 1997 Jul;100(1):44-51. doi: 10.1016/s0091-6749(97)70193-3. PMID: 9257786.
  33. Wenzel SE, Szefler SJ, Leung DY, Sloan SI, Rex MD, Martin RJ. Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med. 1997 Sep;156(3 Pt 1):737-43. doi: 10.1164/ajrccm.156.3.9610046. PMID: 9309987.
  34. Mauad T, Silva LF, Santos MA, Grinberg L, Bernardi FD, Martins MA, Saldiva PH, Dolhnikoff M. Abnormal alveolar attachments with decreased elastic fiber content in distal lung in fatal asthma. Am J Respir Crit Care Med. 2004 Oct 15;170(8):857-62. doi: 10.1164/rccm.200403-305OC. Epub 2004 May 19. PMID: 15151920.
  35. Stănescu D. Small airways obstruction syndrome. Chest. 1999 Jul;116(1):231-3. doi: 10.1378/chest.116.1.231. PMID: 10424530.
  36. Ruppel GL. What is the clinical value of lung volumes? Respir Care. 2012 Jan;57(1):26-35; discussion 35-8. doi: 10.4187/respcare.01374. PMID: 22222123.
  37. Colp C, Williams MH Jr. Total occlusion of airways producing a restrictive pattern of ventilatory impairment. Am Rev Respir Dis. 1973 Jul;108(1):118-22. doi: 10.1164/arrd.1973.108.1.118. PMID: 4715958.
  38. Gilbert R, Auchincloss JH Jr. Reactive airways dysfunction syndrome presenting as a reversible restrictive defect. Lung. 1989;167(1):55-61. doi: 10.1007/BF02714930. PMID: 2493535.
  39. Miller A. A simple spirometric clue to asthma: airways obstruction suggested by negative or reduced forced expiratory reserve volume despite normal FEV1-FVC ratio. Mt Sinai J Med. 1990 Mar;57(2):85-92. PMID: 2366769.

Download Article
Received August 5, 2024.
Accepted September13, 2024.
©2024 International Medical Research and Development Corporation.