Optimal Microwave Ablation Conditions for the Efficient Lung Carcinoma Treatment

Marija Radmilović-Radjenović, Branislav Radjenović

 
For citation: Radmilović-Radjenović M, Radjenović B. Optimal Microwave Ablation Conditions for the Efficient Lung Carcinoma Treatment. International Journal of Biomedicine. 2024;14(4):587-590. doi:10.21103/Article14(4)_OA8
 
Originally published December 5, 2024
 

Abstract: 

The differing dielectric characteristics of healthy and malignant tissues significantly affect the temporal evolution of maximum temperature and the extent of tissue necrosis during the ablation process. Understanding these properties helps optimize MWA parameters, such as power, for better treatment outcomes.This article discusses the results of simulation studies of the effects of microwave ablation (MWA) on lung tumor tissue. Calculations were performed using COMSOL Multiphysics, considering the relative permittivity and conductivity of normal and tumoral lung tissues. The obtained results reveal that ablation zones are predominantly concentrated around the tip and slot of the antenna, with a comparatively minimal backward heating effect. Achieving an optimal target temperature is essential for effective cancer treatment; however, preventing thermal damage to adjacent healthy tissues is equally critical. The results of this study may be useful for optimizing MWA protocols, aiming for minimal invasiveness and enhanced safety in lung cancer treatments. Moreover, the findings emphasize the importance of personalized treatment strategies that consider the unique dielectric characteristics of individual patients' tissues. Overall, this study contributes valuable knowledge to thermal ablation therapies, with significant implications for improving outcomes in lung cancer treatment.

Keywords: 
microwave ablation • lung cancer • thermal damage • dielectric properties
References: 
  1. Schabath MB, Cote ML. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomarkers Prev. 2019 Oct;28(10):1563-1579. doi: 10.1158/1055-9965.EPI-19-0221. PMID: 31575553; PMCID: PMC6777859.
  2. Zahnd WE, Eberth JM. Lung Cancer Screening Utilization: A Behavioral Risk Factor Surveillance System Analysis. Am J Prev Med. 2019 Aug;57(2):250-255. doi: 10.1016/j.amepre.2019.03.015. Epub 2019 Jun 24. PMID: 31248742.
  3. Radmilović-Radjenović M, Sabo M, Prnova M, Šoltes L, Radjenović B. Finite Element Analysis of the Microwave Ablation Method for Enhanced Lung Cancer Treatment. Cancers (Basel). 2021 Jul 13;13(14):3500. doi: 10.3390/cancers13143500. PMID: 34298714; PMCID: PMC8306858.
  4. El-Zein RA, Abdel-Rahman S, Santee KJ, Yu R, Shete S. Identification of Small and Non-Small Cell Lung Cancer Markers in Peripheral Blood Using Cytokinesis-Blocked Micronucleus and Spectral Karyotyping Assays. Cytogenet Genome Res. 2017;152(3):122-131. doi: 10.1159/000479809. Epub 2017 Sep 13. PMID: 28898877.
  5. Moya-Horno I, Viteri S, Karachaliou N, Rosell R. Combination of immunotherapy with targeted therapies in advanced non-small cell lung cancer (NSCLC). Ther Adv Med Oncol. 2018 Jan 9;10:1758834017745012. doi: 10.1177/1758834017745012. PMID: 29383034; PMCID: PMC5784559.
  6. Moya-Horno I, Viteri S, Karachaliou N, Rosell R. Combination of immunotherapy with targeted therapies in advanced non-small cell lung cancer (NSCLC). Ther Adv Med Oncol. 2018 Jan 9;10:1758834017745012. doi: 10.1177/1758834017745012. PMID: 29383034; PMCID: PMC5784559.
  7. Yang S, Zhang Z, Wang Q. Emerging therapies for small cell lung cancer. J Hematol Oncol. 2019 May 2;12(1):47. doi: 10.1186/s13045-019-0736-3. PMID: 31046803; PMCID: PMC6498593.
  8. El-Turk N, Chou MSH, Ting NCH, Girgis A, Vinod SK, Bray V, Dobler CC. Treatment burden experienced by patients with lung cancer. PLoS One. 2021 Jan 22;16(1):e0245492. doi: 10.1371/journal.pone.0245492. PMID: 33481895; PMCID: PMC7822249.
  9. Pusceddu C, Melis L, Sotgia B, Guerzoni D, Porcu A, Fancellu A. Usefulness of percutaneous microwave ablation for large non-small cell lung cancer: A preliminary report. Oncol Lett. 2019 Jul;18(1):659-666. doi: 10.3892/ol.2019.10375. Epub 2019 May 20. PMID: 31289539; PMCID: PMC6546981.
  10. Radmilović-Radjenović M, Radjenović D, Radjenović B. Finite element analysis of the effect of microwave ablation on the liver, lung, kidney, and bone malignant tissues. EPL. 2021;136:28001. doi:10.1209/0295-5075/ac2719
  11. Macchi M, Belfiore MP, Floridi C, Serra N, Belfiore G, Carmignani L, Grasso RF, Mazza E, Pusceddu C, Brunese L, Carrafiello G. Radiofrequency versus microwave ablation for treatment of the lung tumours: LUMIRA (lung microwave radiofrequency) randomized trial. Med Oncol. 2017 May;34(5):96. doi: 10.1007/s12032-017-0946-x. Epub 2017 Apr 18. PMID: 28417355.
  12. Evans AL, Buehler D, Schulte JJ, McCarthy DP, Hagness SC. Microwave dielectric properties of normal, fibroelastotic, and malignant human lung tissue. Biomed Phys Eng Express. 2024 Aug 14;10(5). doi: 10.1088/2057-1976/ad6b32. PMID: 39102844.
  13. Joines WT, Zhang Y, Li C, Jirtle RL. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys. 1994 Apr;21(4):547-50. doi: 10.1118/1.597312. PMID: 8058021.
  14. COMSOL Multiphysics. Simulation Software. 1986-2020. Burlington (MA): COMSOL, Inc. www.comsol.com
  15. Rossmann C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng. 2014;42(6):467-92. doi: 10.1615/critrevbiomedeng.2015012486. PMID: 25955712; PMCID: PMC4859435.

Download Article
Received October 20, 2024.
Accepted November 29, 2024.
©2024 International Medical Research and Development Corporation.