Metabolic Syndrome in Caucasian Women with Hyperandrogenism: Lipid Metabolism and Lipid Peroxidation System

M. A. Darenskaya, L. V. Belenkaia, L. V. Suturina, S. I. Kolesnikov, L. F. Sholokhov, L. M. Lazareva, Ya. G. Nadelyaeva, I. N. Danusevich, L. I. Kolesnikova

 
For citation: Darenskaya MA, Belenkaia LV, Suturina LV, Kolesnikov SI, Sholokhov LF, Lazareva LM, Nadelyaeva YaG, Danusevich IN, Kolesnikova LI. Metabolic Syndrome in Caucasian Women with Hyperandrogenism: Lipid Metabolism and Lipid Peroxidation System. International Journal of Biomedicine. 2025;15(1):84-89. doi:10.21103/Article15(1)_OA5
 
Originally published March 5, 2025

Abstract: 

Background: The study aimed to evaluate the parameters of lipid metabolism and lipid peroxidation (LPO) - antioxidant defense (AOD) system disorders in Caucasian women with metabolic syndrome (MetS) and hyperandrogenism (HA).
Methods and Results: 300 Caucasian women of reproductive age (18-44 years) living in the Irkutsk region and the Republic of Buryatia territories were examined. According to MetS and polycystic ovary syndrome (PCOS) diagnostic criteria, the following groups were formed: Group 1 included 209 women with MetS, and Group 2 included 23 women with MetS and PCOS (hyperandrogenic phenotypes). The control group (n=68) consisted of practically healthy women.
The parameters of lipid metabolism (triglycerides [TG], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C]), lipid peroxidation system (double bounds [DBs], conjugated dienes [CDs], ketodienes and conjugated trienes [KD and CT], thiobarbituric acids reactive substances [TBARS]), and antioxidant defense (total antioxidant activity [TAA], superoxide dismutase [SOD] activity, reduced glutathione [GSH], oxidized glutathione [GSSG], retinol, α-tocopherol) were studied. Spectrophotometric, fluorometric, and statistic methods were used.
In Group 1 (MetS), the levels of TG and LDL-C were significantly higher than in the control group (P<0.0001 and P=0.046, respectively). In contrast, the HDL-C level was significantly lower than in the control group (P<0001).  Similarly, in Group 2 (MetS+HA), we found an increase in the TG level (P<0.001) and a decrease in the HDL-C level (P=0.008) compared with the control group. (Table 1). There were no differences between Groups 1 and 2 (P>0.05).
The LPO reactions were more intense in women with MetS, characterized by a higher content of substrates with DBs (P=0.010) and TBARS (P=0.037) compared with the control group. In Group 2 (MetS+HA), only the TBARS level was statistically significantly higher (P=0.008) than in the control group.
In Group 1 (MetS), the SOD activity and the levels of α-tocopherol and retinol were significantly higher than in the control group (P=0.005, P=0.017, and P<0.001, respectively) (Table 3). The SOD activity was significantly lower in Group 2 (MetS+HA) than in Group 1 (MetS) (P=0.043).  The remaining indicators of antioxidant defense status did not differ significantly between Groups 1 and 2.
Conclusion: The data obtained indicated a proatherogenic nature of lipid metabolism, increased LPO reactions, and a compensatory increase in some components of the AOD system in Caucasian women with MetS. In women with the MetS-HA comorbidity, the activity of AOD factors does not increase.

Keywords: 
metabolic syndrome • hyperandrogenism • polycystic ovary syndrome • Caucasian • lipids • lipid peroxidation • antioxidant defense
References: 
  1. Wu LT, Shen YF, Hu L, Zhang MY, Lai XY. Prevalence and associated factors of metabolic syndrome in adults: a population-based epidemiological survey in Jiangxi province, China. BMC Public Health. 2020 Jan 30;20(1):133. doi: 10.1186/s12889-020-8207-x. PMID: 32000739; PMCID: PMC6993347.
  2. Darenskaya MA, Belenkaia LV, Kolesnikov SI, Sholokhov LF, Danusevich IN, Lazareva LM, Nadeliaeva IaG, Kolesnikova LI. [Metabolic syndrome associated with hyperandrogenism in the reproductive age. Hormonal profile in different ethnicities women]. Acta Biomedica Scientifica. 2024; 9(5): 150-158. doi: 10.29413/ABS.2024-9.5.16 [Article in Russian].
  3. Belenkaia LV, Suturina LV, Darenskaya MA, Atalyan AV, Lazareva LM, Nadelyaeva IG, Babaeva NI, Sholokhov LF, Kolesnikova LI. [Age-related determinants of the metabolic syndrome in women of reproductive age of the main ethnic groups of the Baikal Region]. Acta Biomedica Scientifica. 2023;8(4):39-48. doi: 10.29413/ABS.2023-8.4.5 [Article in Russian].
  4. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018 May;14(5):270-284. doi: 10.1038/nrendo.2018.24. Epub 2018 Mar 23. PMID: 29569621.
  5. Kim MJ, Lim NK, Choi YM, Kim JJ, Hwang KR, Chae SJ, Park CW, Choi DS, Kang BM, Lee BS, Kim T, Park HY. Prevalence of metabolic syndrome is higher among non-obese PCOS women with hyperandrogenism and menstrual irregularity in Korea. PLoS One. 2014 Jun 5;9(6):e99252. doi: 10.1371/journal.pone.0099252. PMID: 24901345; PMCID: PMC4047097.
  6. Cadagan D, Khan R, Amer S. Thecal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome. Reprod Biol. 2016 Mar;16(1):53-60. doi: 10.1016/j.repbio.2015.12.006. Epub 2016 Jan 13. PMID: 26952754.
  7. Milutinović DV, Nikolić M, Veličković N, Djordjevic A, Bursać B, Nestorov J, Teofilović A, Antić IB, Macut JB, Zidane AS, Matić G, Macut D. Enhanced Inflammation without Impairment of Insulin Signaling in the Visceral Adipose Tissue of 5α-Dihydrotestosterone-Induced Animal Model of Polycystic Ovary Syndrome. Exp Clin Endocrinol Diabetes. 2017 Sep;125(8):522-529. doi: 10.1055/s-0043-104531. Epub 2017 Apr 13. PMID: 28407665.
  8. Pierre A, Taieb J, Giton F, Grynberg M, Touleimat S, El Hachem H, Fanchin R, Monniaux D, Cohen-Tannoudji J, di Clemente N, Racine C. Dysregulation of the Anti-Müllerian Hormone System by Steroids in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2017 Nov 1;102(11):3970-3978. doi: 10.1210/jc.2017-00308. PMID: 28938480.
  9. Lin T, Lee JE, Kang JW, Shin HY, Lee JB, Jin DI. Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development. Int J Mol Sci. 2019 Jan 18;20(2):409. doi: 10.3390/ijms20020409. PMID: 30669355; PMCID: PMC6359168.
  10. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Nikitina OA, Lazareva LM, Suturina LV, Danusevich IN, Druzhinina EB, Semendyaev AA. Activity of LPO Processes in Women with Polycystic Ovarian Syndrome and Infertility. Bull Exp Biol Med. 2017 Jan;162(3):320-322. doi: 10.1007/s10517-017-3605-5. Epub 2017 Jan 14. PMID: 28091905.
  11. Krusko OV, Sholokhov LF, Belenkaya LV, Rashidova MA, Danusevich IN, Nadelyaeva YaG, Lazareva LM, Kolesnikova LI. [Features of the functional state of the pituitary-ovarian system in women with polycystic ovary syndrome in different periods of reproductive age]. Annals of the Russian Academy of Medical Sciences. 2020;75(6):653-660. doi: 10.15690/vramn1251. [Article in Russian].
  12. Lizneva D, Kirubakaran R, Mykhalchenko K, Suturina L, Chernukha G, Diamond MP, Azziz R. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: systematic review and meta-analysis. Fertil Steril. 2016 Nov;106(6):1510-1520.e2. doi: 10.1016/j.fertnstert.2016.07.1121. Epub 2016 Aug 13. PMID: 27530062.
  13. Salehi R, Mazier HL, Nivet AL, Reunov AA, Lima P, Wang Q, Fiocco A, Isidoro C, Tsang BK. Ovarian mitochondrial dynamics and cell fate regulation in an androgen-induced rat model of polycystic ovarian syndrome. Sci Rep. 2020 Jan 23;10(1):1021. doi: 10.1038/s41598-020-57672-w. PMID: 31974436; PMCID: PMC6978404.
  14. Chen W, Pang Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites. 2021 Dec 14;11(12):869. doi: 10.3390/metabo11120869. PMID: 34940628; PMCID: PMC8709086.
  15. Bil E, Dilbaz B, Cirik DA, Ozelci R, Ozkaya E, Dilbaz S. Metabolic syndrome and metabolic risk profile according to polycystic ovary syndrome phenotype. J Obstet Gynaecol Res. 2016 Jul;42(7):837-43. doi: 10.1111/jog.12985. Epub 2016 Apr 13. PMID: 27071345.
  16. Shukla P, Mukherjee S. Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion. 2020 May;52:24-39. doi: 10.1016/j.mito.2020.02.006. Epub 2020 Feb 17. PMID: 32081727.
  17. Peng Y, Yang X, Luo X, Liu C, Cao X, Wang H, Guo L. Novel mechanisms underlying anti-polycystic ovary like syndrome effects of electroacupuncture in rats: suppressing SREBP1 to mitigate insulin resistance, mitochondrial dysfunction and oxidative stress. Biol Res. 2020 Oct 27;53(1):50. doi: 10.1186/s40659-020-00317-z. PMID: 33109277; PMCID: PMC7590702.
  18. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018 Aug 31;128(9):3716-3726. doi: 10.1172/JCI120849. Epub 2018 Aug 20. PMID: 30124471; PMCID: PMC6118589.
  19. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Timofeeva EV, Leshchenko OY, Vanteeva OA, Rashidova MA. [Evaluation of the pro- and antioxidant status of women with HIV or coinfection]. Ter Arkh. 2016;88(11):17-21. [Article in Russian]. doi: 10.17116/terarkh2016881117-21. PMID: 28005027.
  20. Zeng X, Huang Q, Long SL, Zhong Q, Mo Z. Mitochondrial Dysfunction in Polycystic Ovary Syndrome. DNA Cell Biol. 2020 Aug;39(8):1401-1409. doi: 10.1089/dna.2019.5172. Epub 2020 Feb 20. PMID: 32077751.
  21. Experts’ consensus on the interdisciplinary approach towards the management, diagnostics, and treatment of patients with metabolic syndrome. Cardiovascular Therapy and Prevention. 2013;12(6):41-82. [Article in Russian].
  22. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004 Jan;19(1):41-7. doi: 10.1093/humrep/deh098. PMID: 14688154.
  23. Darenskaya MA, Gavrilova OA, Rychkova LV, Zhdanova LA, Buldaeva, EA, Grebenkina LA, et al. Characteristics of Lipid Peroxidation Processes and Antioxidant Status in Teenagers-Boys of Different Ethnic Groups with Exogenous Constitutional Obesity and Non-Alcoholic Fatty Liver Disease. International Journal of Biomedicine. 2018;8(4):306-310. doi: 10.21103/Article8(4)_OA7
  24. Nilsson PM, Tuomilehto J, Rydén L. The metabolic syndrome - What is it and how should it be managed? Eur J Prev Cardiol. 2019 Dec;26(2_suppl):33-46. doi: 10.1177/2047487319886404. PMID: 31766917.
  25. Taghizadeh S, Alizadeh M. The Role of Lipids in the Pathogenesis of Metabolic Syndrome in Adolescents. Exp Clin Endocrinol Diabetes. 2018 Jan;126(1):14-22. doi: 10.1055/s-0043-106439. Epub 2017 Nov 8. PMID: 29117624.
  26. Brown AE, Walker M. Genetics of Insulin Resistance and the Metabolic Syndrome. Curr Cardiol Rep. 2016 Aug;18(8):75. doi: 10.1007/s11886-016-0755-4. PMID: 27312935; PMCID: PMC4911377.
  27. Fathi Dizaji B. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab Syndr. 2018 Sep;12(5):783-789. doi: 10.1016/j.dsx.2018.04.009. Epub 2018 Apr 11. PMID: 29673926.
  28. Zhu S, Zhang B, Jiang X, Li Z, Zhao S, Cui L, Chen ZJ. Metabolic disturbances in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil Steril. 2019 Jan;111(1):168-177. doi: 10.1016/j.fertnstert.2018.09.013. PMID: 30611404.
  29. Kazemi M, Kim JY, Parry SA, Azziz R, Lujan ME. Disparities in cardio metabolic risk between Black and White women with polycystic ovary syndrome: a systematic review and meta-analysis. Am J Obstet Gynecol. 2021 May;224(5):428-444.e8. doi: 10.1016/j.ajog.2020.12.019. Epub 2020 Dec 13. PMID: 33316275.
  30. Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid Med Cell Longev. 2019 May 5;2019:8267234. doi: 10.1155/2019/8267234. PMID: 31191805; PMCID: PMC6525823.
  31. Darenskaya MA, Semendyaev AA, Stupin DA, Grebenkina LA, Danusevich IN, Kolesnikova LI, Kolesnikov SI. Activity of Antioxidant Enzymes in the Regional Blood Flow during Pelvic Venous Disorders in Women. Bull Exp Biol Med. 2020 Oct;169(6):747-750. doi: 10.1007/s10517-020-04970-y. Epub 2020 Oct 24. PMID: 33098505.
  32. Darenskaya MA, Rychkova LV, Balzhirova DB, Semenova NV, Nikitina OA, Lesnaya A, Yuzvak N, Rashidova MA, Kolesnikova LI. The level of lipid peroxidation products and medium-molecular-weight peptides in adolescents with obesity. International Journal of Biomedicine. 2023;13(2):292-295. doi: 10.21103/Article13(2)_OA17
  33. Darenskaya M, Kolesnikova L, Kolesnikov S. The Association of Respiratory Viruses with Oxidative Stress and Antioxidants. Implications for the COVID-19 Pandemic. Curr Pharm Des. 2021;27(13):1618-1627. doi: 10.2174/1381612827666210222113351. PMID: 33618639.
  34. Darenskaya MA, Gavrilova OA, Rychkova LV, Kravtsova OV, Grebenkina LA, Osipova EV, Kolesnikov SI, Kolesnikova LI. The assessment of oxidative stress intensity in adolescents with obesity by the integral index. International Journal of Biomedicine. 2018;8(1):37-41. doi:10.21103/Article8(1)_OA5
  35. Prokudina ES, Maslov LN, Ivanov VV, Bespalova ID, Pismennyi DS, Voronkov NS. [The Role of Reactive Oxygen Species in the Pathogenesis of Adipocyte Dysfunction in Metabolic Syndrome. Prospects of Pharmacological Correction]. Vestn Ross Akad Med Nauk. 2017;72(1):11-6. [Article in Russian]. doi: 10.15690/vramn798. PMID: 29308837.
  36. Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal. 2017 Mar 20;26(9):445-461. doi: 10.1089/ars.2016.6756. Epub 2016 Jul 14. PMID: 27302002.
  37. Kolesnikova LI, Rychkova LV, Kolesnikova LR, Darenskaya MA, Natyaganova LV, Grebenkina LA, Korytov LI, Kolesnikov SI. Coupling of Lipoperoxidation Reactions with Changes in Arterial Blood Pressure in Hypertensive ISIAH Rats under Conditions of Chronic Stress. Bull Exp Biol Med. 2018 Apr;164(6):712-715. doi: 10.1007/s10517-018-4064-3. Epub 2018 Apr 16. PMID: 29658086.
  38. Kolesnikova LR, Darenskaya MA, Rychkova LV, Pogodina AV, Grebenkina LA, Kolesnikov SI, Kolesnikova LI. Oxidative stress parameters and state of regional periodontal blood flow in adolescents with arterial hypertension and periodontal diseases. International Journal of Biomedicine. 2018;8(4):301-305. doiI:10.21103/Article8(4)_OA6
  39. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Nikitina OA, Lazareva LM, Suturina LV, Danusevich IN, Druzhinina EB, Semendyaev AA. Activity of LPO Processes in Women with Polycystic Ovarian Syndrome and Infertility. Bull Exp Biol Med. 2017 Jan;162(3):320-322. doi: 10.1007/s10517-017-3605-5. Epub 2017 Jan 14. PMID: 28091905.
  40. Uçkan K, Demir H, Turan K, Sarıkaya E, Demir C. Role of Oxidative Stress in Obese and Nonobese PCOS Patients. Int J Clin Pract. 2022 Feb 9;2022:4579831. doi: 10.1155/2022/4579831. PMID: 35685525; PMCID: PMC9159123.
  41. Vasyuk YuA, Sadulaeva IA, Yushchuk EN, Trofimenko OS, Ivanova SV.Retinol binding protein as a marker of cardiovascular risk in arterial hypertension and obesity. Russian Journal of Cardiology. 2018;(4):14-18. doi: 10.15829/1560-4071-2018-4-14-18

Download Article
Received December 26, 2024.
Accepted January 30, 2025.
©2025 International Medical Research and Development Corporation.