Modern Perspectives on the Role of L-Type Calcium Channel Blocker for Hearing Preservation in Sensorineural Hearing Loss: A Systematic Review of Recent Randomized Clinical Trials

Amelia Puspita, Dayinta Grahitanindya

 
For citation: Puspita A, Grahitanindya D. Modern Perspectives on the Role of L-Type Calcium Channel Blocker for Hearing Preservation in Sensorineural Hearing Loss: A Systematic Review of Recent Randomized Clinical Trials. International Journal of Biomedicine. 2025;15(1):90-94. doi:10.21103/Article15(1)_OA6
 
Originally published March 5, 2025

Abstract: 

Background: Globally, an estimated 1.57 billion individuals experienced some degree of hearing loss, with 403.3 million cases classified as moderate to severe. Several L-type CCBs have demonstrated protective effects against various types of sensorineural hearing loss (SNHL). This systematic review aims to synthesize recent findings on the efficacy of L-type CCBs in preserving hearing function in SNHL and highlight research gaps for future exploration.
Methods and Results: A thorough search of the literature was conducted using several databases, including PubMed Central, Google Scholar, ClinicalTrials.gov, and EBSCOHost, for relevant literature from January 2000 to January 2024. Of the 578 studies screened, 4 RCTs met the criteria. In animal studies, L-type CCBs demonstrated reduced hearing threshold shifts and hair cell preservation under noise and ototoxic stress. In humans, nimodipine showed limited, non-significant benefits in surgical patients. Efficacy varied with SNHL etiology, and inconsistencies were noted due to differences in dosage, delivery, and study bias.
Conclusion: L-type CCBs may protect against SNHL under specific conditions, calcium overload. However, inconsistencies in findings and high risks of bias across studies make it difficult to draw firm conclusions for clinical application. Rigorous, well-designed research is needed to clarify when CCBs may be beneficial.

Keywords: 
calcium channel blockers • sensorineural hearing loss • noise-induced hearing loss
References: 
  1. Chadha S, Cieza A. World Health Organization and Its Initiative for Ear and Hearing Care. Otolaryngol Clin North Am. 2018 Jun;51(3):535-542. doi: 10.1016/j.otc.2018.01.002. Epub 2018 Feb 24. PMID: 29486926.
  2. GBD 2019 Hearing Loss Collaborators. Hearing loss prevalence and years lived with disability, 1990-2019: findings from the Global Burden of Disease Study 2019. Lancet. 2021 Mar 13;397(10278):996-1009. doi: 10.1016/S0140-6736(21)00516-X. PMID: 33714390; PMCID: PMC7960691.
  3. Hopkins K. Deafness in cochlear and auditory nerve disorders. Handb Clin Neurol. 2015;129:479-94. doi: 10.1016/B978-0-444-62630-1.00027-5. PMID: 25726286.
  4. Jones KE, Hayden SL, Meyer HR, Sandoz JL, Arata WH, Dufrene K, Ballaera C, Lopez Torres Y, Griffin P, Kaye AM, Shekoohi S, Kaye AD. The Evolving Role of Calcium Channel Blockers in Hypertension Management: Pharmacological and Clinical Considerations. Curr Issues Mol Biol. 2024 Jun 22;46(7):6315-6327. doi: 10.3390/cimb46070377. PMID: 39057019; PMCID: PMC11275245.
  5. Hafidi A, Dulon D. Developmental expression of Ca(v)1.3 (alpha1d) calcium channels in the mouse inner ear. Brain Res Dev Brain Res. 2004 Jun 21;150(2):167-75. doi: 10.1016/j.devbrainres.2004.03.007. Erratum in: Brain Res Dev Brain Res. 2004 Oct 15;153(1):151. PMID: 15158080.
  6. Guo Z, Tian E, Chen S, Wang J, Chen J, Kong W, Crans DC, Lu Y, Zhang S. Lercanidipine's Antioxidative Effect Prevents Noise-Induced Hearing Loss. Antioxidants (Basel). 2024 Mar 7;13(3):327. doi: 10.3390/antiox13030327. PMID: 38539861; PMCID: PMC10967582.
  7. Naples JG, Ruckenstein MJ, Singh J, Cox BC, Li D. Intratympanic Diltiazem-Chitosan Hydrogel as an Otoprotectant Against Cisplatin-Induced Ototoxicity in a Mouse Model. Otol Neurotol. 2020 Jan;41(1):115-122. doi: 10.1097/MAO.0000000000002417. PMID: 31746818; PMCID: PMC6910999.
  8. Miller AL, Prieskorn DM, Altschuler RA, Miller JM. Mechanism of electrical stimulation-induced neuroprotection: effects of verapamil on protection of primary auditory afferents. Brain Res. 2003 Mar 21;966(2):218-30. doi: 10.1016/s0006-8993(02)04170-7. PMID: 12618345.
  9. Liu J, Niu YG, Li WX, Yuan YY, Han WJ, Yu N, Yang SM, Li XQ. Interaction of a calcium channel blocker with noise in cochlear function in guinea pig. Acta Otolaryngol. 2012 Nov;132(11):1140-4. doi: 10.3109/00016489.2012.690534. Epub 2012 Jul 10. PMID: 22780109.
  10. Scheller C, Wienke A, Tatagiba M, Gharabaghi A, Ramina KF, Ganslandt O, Bischoff B, Zenk J, Engelhorn T, Matthies C, Westermaier T, Antoniadis G, Pedro MT, Rohde V, von Eckardstein K, Kretschmer T, Kornhuber M, Steighardt J, Richter M, Barker FG 2nd, Strauss C. Prophylactic nimodipine treatment for cochlear and facial nerve preservation after vestibular schwannoma surgery: a randomized multicenter Phase III trial. J Neurosurg. 2016 Mar;124(3):657-64. doi: 10.3171/2015.1.JNS142001. Epub 2015 Aug 14. PMID: 26274985.
  11. Tanna RJ, Lin JW, De Jesus O. Sensorineural Hearing Loss. In: StatPearls [Internet]. StatPearls Publishing; 2023.
  12. Ren H, Hu B, Jiang G. Advancements in prevention and intervention of sensorineural hearing loss. Therapeutic Advances in Chronic Disease [Internet]. 2022; Available from: https://journals.sagepub.com/doi/10.1177/20406223221104987
  13. Sukumaran P, Nascimento Da Conceicao V, Sun Y, Ahamad N, Saraiva LR, Selvaraj S, Singh BB. Calcium Signaling Regulates Autophagy and Apoptosis. Cells. 2021 Aug 18;10(8):2125. doi: 10.3390/cells10082125. PMID: 34440894; PMCID: PMC8394685.
  14. Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal. 2011 Apr 1;14(7):1275-88. doi: 10.1089/ars.2010.3359. Epub 2010 Oct 6. PMID: 20615073; PMCID: PMC3122891.

Download Article
Received December 16, 2024.
Accepted January 23, 2025.
©2025 International Medical Research and Development Corporation.