The Influence of Outer Hair Cells on Tectorial Membrane Waves

Haruki Mizuno, Toshiaki Kitamura

 
For citation: Mizuno H, Kitamura T. The Influence of Outer Hair Cells on Tectorial Membrane Waves. International Journal of Biomedicine. 2025;15(3):523-526. doi:10.21103/Article15(3)_OA10
 
Originally published September 5, 2025

Abstract: 

The cochlea, a vital structure for hearing, comprising the scala media, scala tympani, and scala vestibuli, separated by Reissner’s and basilar membranes. The scala media houses the organ of Corti, containing inner and outer hair cells (IHCs and OHCs). Extensive research has explored OHCs, focusing on their mechanical properties and role in cochlear mechanics. This study investigates the impact of OHCs on two types of tectorial membrane (TM) slow waves, termed TM wave 1 and TM wave 2, using modal analysis. The research utilizes a model incorporating the basilar membrane, TM, and OHCs. The study explores how OHCs influence the propagation characteristics of these waves. Results demonstrate that OHCs affect TM wave 1 minimally, with distinctions becoming negligible at higher frequencies. In contrast, OHCs significantly influence TM wave 2, especially in the high-frequency range. The study further explores the frequency-dependent phase and attenuation constants of these waves, revealing substantial effects of OHCs on TM wave 2 across different frequencies and TM widths.

Keywords: 
cochlea • outer hair cell • tectorial membrane • modal analysis • propagation characteristics
References: 
  1. Spector AA, Brownell WE, Popel AS. Mechanical and electromotile characteristics of auditory outer hair cells. Med Biol Eng Comput. 1999 Mar;37(2):247-51. doi: 10.1007/BF02513294. PMID: 10396830.
  2. Tolomeo JA, Steele CR, Holley MC. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophys J. 1996 Jul;71(1):421-9. doi: 10.1016/S0006-3495(96)79244-5. PMID: 8804625; PMCID: PMC1233493.
  3. Karavitaki KD, Mountain DC. Imaging electrically evoked micromechanical motion within the organ of corti of the excised gerbil cochlea. Biophys J. 2007 May 1;92(9):3294-316. doi: 10.1529/biophysj.106.083634. Epub 2007 Feb 2. PMID: 17277194; PMCID: PMC1852364.
  4. Dewey JB, Xia A, Müller U, Belyantseva IA, Applegate BE, Oghalai JS. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea. Cell Rep. 2018 Jun 5;23(10):2915-2927. doi: 10.1016/j.celrep.2018.05.024. PMID: 29874579; PMCID: PMC6309882.
  5. Furness DN, Mahendrasingam S, Ohashi M, Fettiplace R, Hackney CM. The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J Neurosci. 2008 Jun 18;28(25):6342-53. doi: 10.1523/JNEUROSCI.1154-08.2008. PMID: 18562604; PMCID: PMC2989617.
  6. Aranyosi AJ, Freeman DM. Sound-induced motions of individual cochlear hair bundles. Biophys J. 2004 Nov;87(5):3536-46. doi: 10.1529/biophysj.104.044404. Epub 2004 Aug 17. PMID: 15315953; PMCID: PMC1304819.
  7. Kitamura T. Mode analysis of tectorial membrane in cochlea. Biomedical and Pharmacology Journal. 2021; 14: 1389–1395. doi: 10.13005/bpj/2241
  8. Kitamura T, Ueno T. Attenuation characteristics of tectorial membrane wave. Akustika. 2022; 43: 60-64.
  9. Ni G, Elliott SJ, Baumgart J. Finite-element model of the active organ of Corti. J R Soc Interface. 2016 Feb;13(115):20150913. doi: 10.1098/rsif.2015.0913. PMID: 26888950; PMCID: PMC4780563.
  10. Gan RZ, Reeves BP, Wang X. Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng. 2007 Dec;35(12):2180-95. doi: 10.1007/s10439-007-9366-y. Epub 2007 Sep 18. PMID: 17882549.
  11. Koike T, Sakamoto C, Sakashita T, Hayashi K, Kanzaki S, Ogawa K. Effects of a perilymphatic fistula on the passive vibration response of the basilar membrane. Hear Res. 2012 Jan;283(1-2):117-25. doi: 10.1016/j.heares.2011.10.006. Epub 2011 Nov 15. PMID: 22115725.
  12. De Paolis A, Bikson M, Nelson JT, de Ru JA, Packer M, Cardoso L. Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hear Res. 2017 Jun;349:111-128. doi: 10.1016/j.heares.2017.01.015. Epub 2017 Feb 2. PMID: 28161584; PMCID: PMC7000179.

Download Article
Received April 28, 2025.
Accepted June 12, 2025.
©2025 International Medical Research and Development Corporation.