Ferroptosis-Related genes NOX4, PDK4, PRKAA2, and FABP4 Emerge as Novel Prognostic Biomarkers and Therapeutic Targets in Stomach Adenocarcinoma

Qinmin Liu, Fei Wang, Yongjin Luo, Qi Guo, Yichi Zhang, Fanghui Chen, Shaoqiang Liu

 
For citation: Liu Q, Wang F, Luo Y, Guo Q, Zhang Y, Chen F, Liu S. Ferroptosis-Related genes NOX4, PDK4, PRKAA2, and FABP4 Emerge as Novel Prognostic Biomarkers and Therapeutic Targets in Stomach Adenocarcinoma. International Journal of Biomedicine. 2025;15(3):483-489. doi:10.21103/Article15(3)_OA3
 
Originally published September 5, 2025

Abstract: 

Background: Stomach adenocarcinoma (STAD) is the fifth most common malignant tumor worldwide in terms of both incidence and mortality. Treatment and prognosis face great challenges. We aimed to identify potential therapeutic targets or prognostic genes by analyzing STAD RNA-seq and clinical data, as well as ferroptosis-related genes.
Methods and Results: RNA-seq and clinical data of STAD were downloaded from the Cancer Genome Atlas (TCGA) database, and ferroptosis-related gene data were downloaded from the FerrDb V2 website. Bioinformatics and statistical analyses were performed using R software, and statistical significance was set at P<0.05.
We screened 1384 differentially expressed genes (DEGs) between STAD and normal tissues, including 24 ferroptosis-related DEGs. Among these 24 genes, we further screened four hub genes related to survival prognosis: NOX2, PRKAA2, FABP4, and PDK4. Through single-gene survival analysis and Cox regression analysis, and by constructing a prognostic model, we found that STAD patients with low expression of NOX2, PRKAA2, FABP4, and PDK4 had significantly longer survival times; the difference was statistically significant (P<0.05).
Conclusion: We identified four ferroptosis-related DEGs in STAD that are associated with prognosis. These four genes have the potential to become targets for STAD treatment.

Keywords: 
stomach adenocarcinoma • differentially expressed gene • ferroptosis • prognosis
References: 
  1. Lauren P. THE TWO HISTOLOGICAL MAIN TYPES OF GASTRIC CARCINOMA: DIFFUSE AND SO-CALLED INTESTINAL-TYPE CARCINOMA. AN ATTEMPT AT A HISTO-CLINICAL CLASSIFICATION. Acta Pathol Microbiol Scand 1965; 64: 31-49.
  2. Kushima R. The updated WHO classification of digestive system tumours-gastric adenocarcinoma and dysplasia. Pathologe. 2022 Feb;43(1):8-15. English. doi: 10.1007/s00292-021-01023-7. Epub 2021 Nov 22. PMID: 34807275.
  3. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4. PMID: 38572751.
  4. Anderson WF, Rabkin CS, Turner N, Fraumeni JF Jr, Rosenberg PS, Camargo MC. The Changing Face of Noncardia Gastric Cancer Incidence Among US Non-Hispanic Whites. J Natl Cancer Inst. 2018 Jun 1;110(6):608-615. doi: 10.1093/jnci/djx262. PMID: 29361173; PMCID: PMC6005150.
  5. Arnold M, Park JY, Camargo MC, Lunet N, Forman D, Soerjomataram I. Is gastric cancer becoming a rare disease? A global assessment of predicted incidence trends to 2035. Gut. 2020 May;69(5):823-829. doi: 10.1136/gutjnl-2019-320234. Epub 2020 Jan 30. PMID: 32001553; PMCID: PMC8520492.
  6. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021 May;71(3):264-279. doi: 10.3322/caac.21657. Epub 2021 Feb 16. PMID: 33592120; PMCID: PMC9927927.
  7. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nat Rev Dis Primers. 2017 Jun 1;3:17036. doi: 10.1038/nrdp.2017.36. PMID: 28569272.
  8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012 May 25;149(5):1060-72. doi: 10.1016/j.cell.2012.03.042. PMID: 22632970; PMCID: PMC3367386.
  9. Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022 Jul 7;185(14):2401-2421. doi: 10.1016/j.cell.2022.06.003. PMID: 35803244; PMCID: PMC9273022.
  10. Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J, Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 2021 May 4;33(5):1001-1012.e5. doi: 10.1016/j.cmet.2021.02.015. Epub 2021 Mar 9. PMID: 33691090; PMCID: PMC8102368.
  11. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A, Zou W. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019 May;569(7755):270-274. doi: 10.1038/s41586-019-1170-y. Epub 2019 May 1. PMID: 31043744; PMCID: PMC6533917.
  12. Chen X, Kang R, Kroemer G, Tang D. Targeting ferroptosis in pancreatic cancer: a double-edged sword. Trends Cancer. 2021 Oct;7(10):891-901. doi: 10.1016/j.trecan.2021.04.005. Epub 2021 May 20. PMID: 34023326.
  13. Wang H, Lin D, Yu Q, Li Z, Lenahan C, Dong Y, Wei Q, Shao A. A Promising Future of Ferroptosis in Tumor Therapy. Front Cell Dev Biol. 2021 Jun 9;9:629150. doi: 10.3389/fcell.2021.629150. PMID: 34178977; PMCID: PMC8219969.
  14. Cheng X, Dai E, Wu J, Flores NM, Chu Y, Wang R, Dang M, Xu Z, Han G, Liu Y, Chatterjee D, Hu C, Ying J, Du Y, Yang L, Guan X, Mo S, Cao X, Pei G, Jiang J, Lu X, Benitez AM, Waters RE, Pizzi MP, Shanbhag N, Fan Y, Peng F, Hanash SM, Calin G, Futreal A, Song S, Yee C, Mazur PK, Qin JJ, Ajani JA, Wang L. Atlas of Metastatic Gastric Cancer Links Ferroptosis to Disease Progression and Immunotherapy Response. Gastroenterology. 2024 Dec;167(7):1345-1357. doi: 10.1053/j.gastro.2024.07.038. Epub 2024 Aug 2. PMID: 39097198.
  15. Li Q, Guo G, Chen Y, Lu L, Li H, Zhou Z, Guo J, Gan X, Hu Y, Li Q, Sun M, Liu X. HCP5 Derived Novel Microprotein Triggers Progression of Gastric Cancer through Regulating Ferroptosis. Adv Sci (Weinh). 2024 Dec;11(46):e2407012. doi: 10.1002/advs.202407012. Epub 2024 Oct 24. PMID: 39447131; PMCID: PMC11633528.
  16. Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases. Redox Biol. 2021 May;41:101947. doi: 10.1016/j.redox.2021.101947. Epub 2021 Mar 19. PMID: 33774476; PMCID: PMC8027773.
  17. Xiao R, Wang S, Guo J, Liu S, Ding A, Wang G, Li W, Zhang Y, Bian X, Zhao S, Qiu W. Ferroptosis-related gene NOX4, CHAC1 and HIF1A are valid biomarkers for stomach adenocarcinoma. J Cell Mol Med. 2022 Feb;26(4):1183-1193. doi: 10.1111/jcmm.17171. Epub 2022 Jan 13. PMID: 35023280; PMCID: PMC8831942.
  18. Tang CT, Lin XL, Wu S, Liang Q, Yang L, Gao YJ, Ge ZZ. NOX4-driven ROS formation regulates proliferation and apoptosis of gastric cancer cells through the GLI1 pathway. Cell Signal. 2018 Jun;46:52-63. doi: 10.1016/j.cellsig.2018.02.007. Epub 2018 Feb 26. PMID: 29496628.
  19. Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel). 2021 Jun 1;10(6):890. doi: 10.3390/antiox10060890. PMID: 34205998; PMCID: PMC8228183.
  20. Wang L, Gong W. NOX4 regulates gastric cancer cell invasion and proliferation by increasing ferroptosis sensitivity through regulating ROS. Int Immunopharmacol. 2024 May 10;132:112052. doi: 10.1016/j.intimp.2024.112052. Epub 2024 Apr 8. PMID: 38593505.
  21. Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, Zhang L, Liu B. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019 Apr;22:101116. doi: 10.1016/j.redox.2019.101116. Epub 2019 Feb 6. Erratum in: Redox Biol. 2023 Aug;64:102776. doi: 10.1016/j.redox.2023.102776. PMID: 30769285; PMCID: PMC6374999.
  22. Helfinger V, Henke N, Harenkamp S, Walter M, Epah J, Penski C, Mittelbronn M, Schröder K. The NADPH Oxidase Nox4 mediates tumour angiogenesis. Acta Physiol (Oxf). 2016 Apr;216(4):435-46. doi: 10.1111/apha.12625. Epub 2015 Nov 20. PMID: 26513738.
  23. Gao X, Sun J, Huang C, Hu X, Jiang N, Lu C. RNAi-mediated silencing of NOX4 inhibited the invasion of gastric cancer cells through JAK2/STAT3 signaling. Am J Transl Res. 2017 Oct 15;9(10):4440-4449. PMID: 29118906; PMCID: PMC5666053.
  24. Tu WJ, Zeng XW, Deng A, Zhao SJ, Luo DZ, Ma GZ, Wang H, Liu Q. Circulating FABP4 (Fatty Acid-Binding Protein 4) Is a Novel Prognostic Biomarker in Patients With Acute Ischemic Stroke. Stroke. 2017 Jun;48(6):1531-1538. doi: 10.1161/STROKEAHA.117.017128. Epub 2017 May 9. PMID: 28487339.
  25. Yang J, Liu X, Shao Y, Zhou H, Pang L, Zhu W. Diagnostic, Prognostic, and Immunological Roles of FABP4 in Pancancer: A Bioinformatics Analysis. Comput Math Methods Med. 2022 Dec 8;2022:3764914. doi: 10.1155/2022/3764914. PMID: 36532833; PMCID: PMC9754845.
  26. Luis G, Godfroid A, Nishiumi S, Cimino J, Blacher S, Maquoi E, Wery C, Collignon A, Longuespée R, Montero-Ruiz L, Dassoul I, Maloujahmoum N, Pottier C, Mazzucchelli G, Depauw E, Bellahcène A, Yoshida M, Noel A, Sounni NE. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 2021 Jul;43:102006. doi: 10.1016/j.redox.2021.102006. Epub 2021 May 14. PMID: 34030117; PMCID: PMC8163990.
  27. Guo Y, Wang ZW, Su WH, Chen J, Wang YL. Prognostic Value and Immune Infiltrates of ABCA8 and FABP4 in Stomach Adenocarcinoma. Biomed Res Int. 2020 Jun 27;2020:4145164. doi: 10.1155/2020/4145164. PMID: 32685482; PMCID: PMC7338980.
  28. Song X, Liu J, Kuang F, Chen X, Zeh HJ 3rd, Kang R, Kroemer G, Xie Y, Tang D. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep. 2021 Feb 23;34(8):108767. doi: 10.1016/j.celrep.2021.108767. PMID: 33626342.
  29. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023 Aug 18;22(1):138. doi: 10.1186/s12943-023-01827-6. PMID: 37596643; PMCID: PMC10436543.
  30. Saiki H, Hayashi Y, Yoshii S, Kimura E, Nakagawa K, Kato M, Uema R, Inoue T, Sakatani A, Yoshihara T, Tsujii Y, Shinzaki S, Iijima H, Takehara T. The apelin‑apelin receptor signaling pathway in fibroblasts is involved in tumor growth via p53 expression of cancer cells. Int J Oncol. 2023 Dec;63(6):139. doi: 10.3892/ijo.2023.5587. Epub 2023 Nov 3. PMID: 37921070; PMCID: PMC10631769.
  31. Picault FX, Chaves-Almagro C, Projetti F, Prats H, Masri B, Audigier Y. Tumour co-expression of apelin and its receptor is the basis of an autocrine loop involved in the growth of colon adenocarcinomas. Eur J Cancer. 2014 Feb;50(3):663-74. doi: 10.1016/j.ejca.2013.11.017. Epub 2013 Dec 5. PMID: 24316062.
  32. Chen T, Liu N, Xu GM, Liu TJ, Liu Y, Zhou Y, Huo SB, Zhang K. Apelin13/APJ promotes proliferation of colon carcinoma by activating Notch3 signaling pathway. Oncotarget. 2017 Oct 13;8(60):101697-101706. doi: 10.18632/oncotarget.21904. PMID: 29254197; PMCID: PMC5731907.
  33. Zuo M, Tong R, He X, Liu Y, Liu J, Liu S, Liu Y, Cao J, Ma L. FOXO signaling pathway participates in oxidative stress-induced histone deacetylation. Free Radic Res. 2023 Jan;57(1):47-60. doi: 10.1080/10715762.2023.2190862. Epub 2023 Mar 22. PMID: 36927283.
  34. Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int J Biol Sci. 2017 Jul 6;13(7):815-827. doi: 10.7150/ijbs.20052. PMID: 28808415; PMCID: PMC5555100.
  35. Dilmac S, Kuscu N, Caner A, Yildirim S, Yoldas B, Farooqi AA, Tanriover G. SIRT1/FOXO Signaling Pathway in Breast Cancer Progression and Metastasis. Int J Mol Sci. 2022 Sep 6;23(18):10227. doi: 10.3390/ijms231810227. PMID: 36142156; PMCID: PMC9499652.
  36. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011 Sep 2;13(9):1016-23. doi: 10.1038/ncb2329. PMID: 21892142; PMCID: PMC3249400.
  37. Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol. 2022 Oct;85:52-68. doi: 10.1016/j.semcancer.2021.04.006. Epub 2021 Apr 18. PMID: 33862221; PMCID: PMC9768867.
  38. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012 May 9;485(7400):661-5. doi: 10.1038/nature11066. PMID: 22660331; PMCID: PMC3607316.
  39. Han F, Li CF, Cai Z, Zhang X, Jin G, Zhang WN, Xu C, Wang CY, Morrow J, Zhang S, Xu D, Wang G, Lin HK. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun. 2018 Nov 9;9(1):4728. doi: 10.1038/s41467-018-07188-9. PMID: 30413706; PMCID: PMC6226490.
  40. Lin L, Flisikowski K, Schwarzenbacher H, Scharfe M, Severitt S, Blöcker H, Fries R. Characterization of the porcine AMPK alpha 2 catalytic subunitgene (PRKAA2): genomic structure, polymorphism detection and association study. Anim Genet. 2010 Apr;41(2):203-7. doi: 10.1111/j.1365-2052.2009.01971.x. Epub 2009 Sep 29. PMID: 19793316.
  41. Liu L, Guan X, Zhao Y, Wang X, Yin C, Liu Q, Li H. [Mechanism of miR-186-5p Regulating PRKAA2 to Promote Ferroptosis in Lung Adenocarcinoma Cells]. Zhongguo Fei Ai Za Zhi. 2023 Nov 20;26(11):813-821. Chinese. doi: 10.3779/j.issn.1009-3419.2023.102.39. PMID: 38061883; PMCID: PMC10714044.

Download Article
Received July 28, 2025.
Accepted August 22, 2025.
©2025 International Medical Research and Development Corporation.