Biomechanical Analysis of Newly Developed Local Hip Implant from Stainless Steel, Cobalt-Chrome, and Titanium Materials Using the Finite Element Method

Hantonius, Kukuh Dwiputra Hernugrahanto, Fahmi Mubarok, Dwikora Novembri Utomo

 
For citation: Hantonius, Hernugrahanto KW, Mubarok F, Utomo DN. Biomechanical Analysis of Newly Developed Local Hip Implant from Stainless Steel, Cobalt-Chrome, and Titanium Materials Using the Finite Element Method. International Journal of Biomedicine. 2025;15(4):700-703. doi:10.21103/Article15(4)_OA9
 
Originally published December 5, 2025

Abstract: 

Background: Total hip arthroplasty (THA) is one of the most successful health interventions in the last century. However, there have been several reports of dissatisfaction with the hip implant. Most modern implants are manufactured based on Western morphology. This generalized design may not be suitable for all races, particularly Asians, who tend to have a more petite physique and distinct femoral anatomy.
Methods and Results: This study evaluated the biomechanical properties of a newly developed local hip implant using the Finite Element method based on ISO 7206-4, ISO 7206-6, and ASTM F2996-20. The implants were analyzed under static and dynamic load, and three different implant materials were used. The results showed that the titanium (Ti6Al4V) implant had the lowest von Mises stress, the cobalt-chrome (Co28Cr6Mo) implant had the lowest total deformation, and the stainless steel (SS316L) implant had the highest alternating stress and a lower life cycle. All of the materials have more than 1 (>1) safety factor value, which is considered safe for implant manufacturing.
Conclusion: This study offers insights into the performance of various materials under static and dynamic loading conditions, demonstrating that all simulated materials are deemed safe for implant manufacturing.

Keywords: 
biomechanical analysis • hip implant • finite element method
References: 
  1. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007 Oct 27;370(9597):1508-19. doi: 10.1016/S0140-6736(07)60457-7. PMID: 17964352.
  2. Knight SR, Aujla R, Biswas SP. Total Hip Arthroplasty - over 100 years of operative history. Orthop Rev (Pavia). 2011 Sep 6;3(2):e16. doi: 10.4081/or.2011.e16. Epub 2011 Nov 7. PMID: 22355482; PMCID: PMC3257425.
  3. Anakwe RE, Jenkins PJ, Moran M. Predicting dissatisfaction after total hip arthroplasty: a study of 850 patients. J Arthroplasty. 2011 Feb;26(2):209-13. doi: 10.1016/j.arth.2010.03.013. Epub 2010 May 11. PMID: 20462736.
  4. Dundon JM, Felberbaum DL, Long WJ. Femoral stem size mismatch in women undergoing total hip arthroplasty. J Orthop. 2018 Feb 15;15(2):293-296. doi: 10.1016/j.jor.2018.02.002. PMID: 29515329; PMCID: PMC5834656.
  5. Nakasone CK, Naito KT, Nishioka ST, Andrews SN. A smaller femoral stem is needed for asian females. Arch Orthop Trauma Surg. 2023 Aug;143(8):5353-5359. doi: 10.1007/s00402-022-04723-8. Epub 2022 Dec 6. PMID: 36472638.
  6. Edwards K, Leyland KM, Sanchez-Santos MT, Arden CP, Spector TD, Nelson AE, Jordan JM, Nevitt M, Hunter DJ, Arden NK. Differences between race and sex in measures of hip morphology: a population-based comparative study. Osteoarthritis Cartilage. 2020 Feb;28(2):189-200. doi: 10.1016/j.joca.2019.10.014. Epub 2019 Dec 13. PMID: 31843571.
  7. Kunčická L, Kocich R, Lowe T. Advances in metals and alloys for joint replacement. Prog Mater Sci. 2017;88:232-280. doi: 10.1016/j.pmatsci.2017.04.002.
  8. Kaya F, İnce G. Fatigue analysis on a newly designed hip implants with finite element method. Int J Eng Innov Res. 2015;6:162-78. doi:10.47933/ijeir.1540604.
  9. Pekedis M, Yildiz H. Comparison of fatigue behaviour of eight different hip stems: a numerical and experimental study. J Biomed Sci Eng. 2011;4:10. doi:10.4236/jbise.2011.410080.
  10. Ploeg HL, Bürgi  M, Wyss UP. Hip stem fatigue test prediction. Int J Fatigue. 2009;31:894-905. doi:10.1016/j.ijfatigue.2008.10.005.
  11. The International Organization for Standardization. Implants for surgery partial and total hip prosthesis: Determination of endurance properties and performance of stemmed femoral components (ISO 7206-4). 2010. Available from: https://www.iso.org/standard/42769.html [accessed 16 July 2025].
  12. The International Organization for Standardization. Implants for surgery partial and total hip prosthesis: Determination of resistance to static load of modular femoral heads (ISO 7206-10). 2018. Available from: https://www.iso.org/standard/71145.html [accessed 16 July 2025].
  13. ASTM. F2996-20 Standard practice for finite element analysis (FEA) of non-modular metallic orthopaedic hip femoral stems. ASTM Int Conshohocken. 2020;22:1-11. doi:10.1520/F2996-20.
  14. Jagota V, Sethi A, Kumar K. Finite element method: an overview. Walailak J Sci Technol. 2013;10:1-8. doi: 10.2004/wjst.v10i1.499.
  15. Kishawy HA, Hosseini A. Titanium and titanium alloys. In: Machining difficult-to-cut materials. Materials Forming, Machining and Tribology. Springer, Cham; 2019. doi:10.1007/978-3-319-95966-5_3.
  16. Colic K, Krstić D, Stanić V, Marković M, Kostić I, Radulović M, et al. Finite element modeling of hip implant static loading. Procedia Eng. 2016;149:257-62.
  17. Bachtar F, Chen X, Hisada T. Finite element contact analysis of the hip joint. Med Biol Eng Comput. 2006 Aug;44(8):643-51. doi: 10.1007/s11517-006-0074-9. Epub 2006 Jul 6. PMID: 16937206.
  18. Browell R. Calculating and displaying fatigue results. Ansys Sol. 2006;7:9-12.
  19. Amjad M, Badshah S, Ahmad S, Badshah M, Jan S, Yasir M, Akram W, Alam Shah I, Muhammad R, Khan MI, Yasmeen T. Finite element modeling of stress distribution and safety factors in a Ti-27Nb alloy hip implant under real-world physiological loading scenarios. PLoS One. 2024 Aug 6;19(8):e0300270. doi: 10.1371/journal.pone.0300270. PMID: 39106270; PMCID: PMC11302931.
  20. Taqriban R, Ismail R, Jamari J, Bayuseno A. Finite element analysis of artificial hip joint implant made from stainless steel 316L. Bali Med J. 2021;10:448-52. doi:10.15562/bmj.v10i1.2236.
  21. Corda J, Chethan KN, Shenoy S, Shetty S, Shaymasunder N, Zuber M. Fatigue life evaluation of different hip implant designs using finite element analysis. J Appl Eng Sci. 2023;21:896-907. doi:10.5937/jaes0-44094.

Download Article
Received August 7, 2025.
Accepted September 18, 2025.
©2025 International Medical Research and Development Corporation.