Prevalence of Carbapenemase Genes blaOXA-48, blaNDM, and blaIMP in Multidrug Resistant Pseudomonas aeruginosa and Klebsiella pneumoniae Clinical Isolates from University Hospital Sharjah, UAE

Hassan El Sharief, Sara Mohamed Ali, Salsabeel Mohamed, Nours Abbas, Mera Maher, Praveen Kumar, Salma Elnour

 
For citation: Sharief HEl, Ali SM, Mohamed S, Abbas N, Maher M, Kumar P, Elnour S. Prevalence of Carbapenemase Genes blaOXA-48, blaNDM, and blaIMP in Multidrug Resistant Pseudomonas aeruginosa and Klebsiella pneumoniae Clinical Isolates from University Hospital Sharjah, UAE. International Journal of Biomedicine. 2025;15(4):731-735. doi:10.21103/Article15(4)_OA14
 
Originally published December 5, 2025

Abstract: 

Background: Carbapenem-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae are globally recognized as priority pathogens due to their association with multidrug resistance and limited therapeutic options. Carbapenemase genes, such as blaOXA-48, blaNDM, and blaIMP, play a central role in the dissemination of resistance.
Methods and Results: This study investigated the prevalence and co-occurrence of these pathogens in 100 multidrug-resistant isolates collected from University Hospital Sharjah, between November 2024 and June 2025. PCR detection revealed blaOXA-48 as the most prevalent gene (66.7% in P. aeruginosa and 65.5% in K. pneumoniae), followed by blaIMP (44.4% and 38.2%), and blaNDM (15.6% and 23.6%). Co-occurrence of two or more genes was observed in over 30% of isolates, and a small proportion carried all three. Approximately one-quarter of isolates tested negative for these targets, indicating alternative mechanisms of carbapenem resistance.
Conclusion: Our findings provide hospital-level molecular data from Sharjah that align with broader trends in the UAE, while highlighting the complexity of resistance-gene combinations. The results underscore the importance of ongoing molecular surveillance, monitoring of gene co-occurrence, and enhanced antimicrobial stewardship to mitigate the effects of multidrug-resistant, Gram-negative infections.

Keywords: 
β-lactamases• carbapenem resistance• metallo-beta-lactamase• infection control
References: 
  1. Thompson W, Cieplik F, Teoh L, Jakubovics N, Benzian H. Fighting the Antimicrobial Resistance Global Emergency: The Lifesaving Role of Dentistry. J Dent Res. 2025 Aug;104(9):933-935. doi: 10.1177/00220345251324162. Epub 2025 Mar 19. PMID: 40108748; PMCID: PMC12209544.
  2. Balkhair A, Saadi KA, Adawi BA. Epidemiology and mortality outcome of carbapenem- and colistin-resistant Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa bloodstream infections. IJID Reg. 2023 Jan 8;7:1-5. doi: 10.1016/j.ijregi.2023.01.002. PMID: 36936715; PMCID: PMC10014253.
  3. Sati H, Carrara E, Savoldi A, Hansen P, Garlasco J, Campagnaro E, Boccia S, Castillo-Polo JA, Magrini E, Garcia-Vello P, Wool E, Gigante V, Duffy E, Cassini A, Huttner B, Pardo PR, Naghavi M, Mirzayev F, Zignol M, Cameron A, Tacconelli E; WHO Bacterial Priority Pathogens List Advisory Group. The WHO Bacterial Priority Pathogens List 2024: a prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect Dis. 2025 Sep;25(9):1033-1043. doi: 10.1016/S1473-3099(25)00118-5. Epub 2025 Apr 14. PMID: 40245910; PMCID: PMC12367593.
  4. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321-31. doi: 10.1098/rstb.1980.0049. PMID: 6109327.
  5. Galdadas I, Qu S, Oliveira ASF, Olehnovics E, Mack AR, Mojica MF, Agarwal PK, Tooke CL, Gervasio FL, Spencer J, Bonomo RA, Mulholland AJ, Haider S. Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics. Elife. 2021 Mar 23;10:e66567. doi: 10.7554/eLife.66567. PMID: 33755013; PMCID: PMC8060031.
  6. Bush K. Classification for β-lactamases: historical perspectives. Expert Rev Anti Infect Ther. 2023 May;21(5):513-522. doi: 10.1080/14787210.2023.2194633. Epub 2023 Apr 6. PMID: 36951174.
  7. Oelschlaeger P. β-Lactamases: Sequence, Structure, Function, and Inhibition. Biomolecules. 2021 Jul 5;11(7):986. doi: 10.3390/biom11070986. PMID: 34356610; PMCID: PMC8301796.
  8. Philippon A, Arlet G, Labia R, Iorga BI. Class C β-Lactamases: Molecular Characteristics. Clin Microbiol Rev. 2022 Sep 21;35(3):e0015021. doi: 10.1128/cmr.00150-21. Epub 2022 Apr 18. PMID: 35435729; PMCID: PMC9491196.
  9. Baig MA. DOMINANCE OF blaOXA-48-LIKE AMONG CARBAPENEM RESISTANT KLEBSIELLA PNEUMONIAE ISOLATED FROM ABU DHABI HOSPITALS. Thesis United Arab Emirates University, 2023.
  10. Lascols C. Global Molecular Characterization of Extended-Spectrum ß-lactamases and carbapenemases in Enterobacterales: Université Paris-Saclay; 2024.
  11. Boyd SE, Holmes A, Peck R, Livermore DM, Hope W. OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother. 2022 Aug 16;66(8):e0021622. doi: 10.1128/aac.00216-22. Epub 2022 Jul 20. PMID: 35856662; PMCID: PMC9380527.
  12. Dong H, Li Y, Cheng J, Xia Z, Liu W, Yan T, Chen F, Wang Z, Li R, Shi J, Qin S. Genomic Epidemiology Insights on NDM-Producing Pathogens Revealed the Pivotal Role of Plasmids on blaNDM Transmission. Microbiol Spectr. 2022 Apr 27;10(2):e0215621. doi: 10.1128/spectrum.02156-21. Epub 2022 Feb 28. PMID: 35225688; PMCID: PMC9049954.
  13. Falagas ME, Asimotou CM, Zidrou M, Kontogiannis DS, Filippou C. Global Epidemiology and Antimicrobial Resistance of Klebsiella Pneumoniae Carbapenemase (KPC)-Producing Gram-Negative Clinical Isolates: A Review. Microorganisms. 2025 Jul 19;13(7):1697. doi: 10.3390/microorganisms13071697. PMID: 40732206; PMCID: PMC12300886.
  14. Di Pilato V, Pollini S, Miriagou V, Rossolini GM, D'Andrea MM. Carbapenem-resistant Klebsiella pneumoniae: the role of plasmids in emergence, dissemination, and evolution of a major clinical challenge. Expert Rev Anti Infect Ther. 2024 Jan-Jun;22(1-3):25-43. doi: 10.1080/14787210.2024.2305854. Epub 2024 Feb 12. PMID: 38236906.
  15. Chen X, Liu X, Ren W, Li H, Yang S. Distribution patterns and evolution of antimicrobial resistance in Gram-negative bacteria within the intensive care unit of a tertiary hospital from 2019 to 2024. Front Microbiol. 2025 May 15;16:1587132. doi: 10.3389/fmicb.2025.1587132. PMID: 40444004; PMCID: PMC12119562.
  16. Liu L, Liu S, Yang Z, Wang F, Yuan H, Xu H, Chen J, Li X. Shifts in hospital-associated pathogens and prevalence trends of carbapenem-resistant Escherichia coli infections, 2021-2023. J Infect Dev Ctries. 2025 Jul 28;19(7):1100-1107. doi: 10.3855/jidc.20930. PMID: 40720467.
  17. Wise MG, Karlowsky JA, Mohamed N, Hermsen ED, Kamat S, Townsend A, Brink A, Soriano A, Paterson DL, Moore LSP, Sahm DF. Global trends in carbapenem- and difficult-to-treat-resistance among World Health Organization priority bacterial pathogens: ATLAS surveillance program 2018-2022. J Glob Antimicrob Resist. 2024 Jun;37:168-175. doi: 10.1016/j.jgar.2024.03.020. Epub 2024 Apr 10. PMID: 38608936.
  18. Thomsen J, Abdulrazzaq NM; UAE AMR Surveillance Consortium; Everett DB, Menezes GA, Senok A, Ayoub Moubareck C. Carbapenem resistant Enterobacterales in the United Arab Emirates: a retrospective analysis from 2010 to 2021. Front Public Health. 2023 Dec 7;11:1244482. doi: 10.3389/fpubh.2023.1244482. PMID: 38145078; PMCID: PMC10745492.
  19. Ragupathi P, Khamisani V, Sadiq AF, Mobiddo MA, Rahamathullah N, Bagchi S, et al. Prevalence of class A ESBL, class B and D carbapenemase encoding genes (CTX-M, TEM, SHV, NDM, IMP, OXA-48) in gram-negative bacterial pathogens isolated from various clinical samples collected from northern region of United Arab Emirates. medRxiv. 2024:2024.01. 26.24301841.
  20. Ziadi H, Chougrani F, Cheriguene A, Carballeira L, García V, Mora A. Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and High-Risk Escherichia coli CC131, with the First Report of ST1193 as a Causative Agent of Urinary Tract Infections in Human Patients in Algeria. Antibiotics (Basel). 2025 May 9;14(5):485. doi: 10.3390/antibiotics14050485. PMID: 40426551; PMCID: PMC12108494.
  21. Al-Marzooq F, Ghazawi A, Allam M, Collyns T. Deciphering the genetic context of the emerging OXA-484-producing carbapenem-resistant Escherichia coli from ST167 high-risk clone in the United Arab Emirates. European Journal of Clinical Microbiology & Infectious Diseases.2025; 44(5):1155-1166. doi:10.1007/s10096-025-05082-z
  22. Rujaibi AA, Jabri ZA, Jardani AA, Rashdi AA, Mamari AA, Sumri SA, Sami H, Muharrmi ZA, Rizvi M. Assessment of Phenotypic Tools for Detection of OXA-48, KPC, and NDM in Klebsiella pneumoniae in Oman. Diagnostics (Basel). 2025 Apr 8;15(8):949. doi: 10.3390/diagnostics15080949. PMID: 40310344; PMCID: PMC12025575.
  23. Agha A, Al Hassani A, Shubbar A, Al Hassani Z, Al Hassani A, Saleem A. Prognosis and Outcome of Carbapenem-Resistant Enterobacterales Bacteremia Managed With Ceftazidime-Avibactam and Aztreonam Combination Therapy in Tawam Hospital, UAE: A Retrospective Study. Cureus. 2025 Jun 10;17(6):e85689. doi: 10.7759/cureus.85689. PMID: 40642711; PMCID: PMC12243072.

Download Article
Received October 6, 2025.
Accepted November 18, 2025.
©2025 International Medical Research and Development Corporation.