Artificial Intelligence in the Management of Low Back Pain

Dafina Milaj Cacaj, Xhorxhina Peshku Alushaj

 
For citation: Cacaj DM, Alushaj XP. Artificial Intelligence in the Management of Low Back Pain. International Journal of Biomedicine. 2025;15(3):452-456. doi:10.21103/Article15(3)_RA3
 
Originally published September 5, 2025

Abstract: 

Background: The last decade has witnessed a technological revolution driven mainly by the development of artificial intelligence (AI), a technology designed to replicate human thinking and behavior. AI has significantly penetrated almost all professional fields, including the medical sciences. The study aimed to review the literature data on the application of AI in the management of low back pain (LBP).
Methods and Results: This study summarizes relevant data from PubMed, Google Scholar, and Scopus, published between 2000 and 2023. Only studies published in English were considered. AI showed great promise in improving the accuracy of LBP diagnosis, optimizing treatment approaches, and predicting clinical outcomes. AI has facilitated the development of personalized self-management programs and real-time symptom monitoring. AI models have outperformed traditional statistical methods in predicting long-term pain and functional recovery.
Conclusion: Although current data suggest a promising role of AI in managing LBP, ongoing research will be crucial to determine its clinical utility and broader integration into everyday clinical practice.

Keywords: 
machine learning • LBP therapy •predicting clinical outcomes
References: 
  1. Koes BW, van Tulder MW, Thomas S. Diagnosis and treatment of low back pain. BMJ. 2006 Jun 17;332(7555):1430-4. doi: 10.1136/bmj.332.7555.1430. PMID: 16777886; PMCID: PMC1479671.
  2. Hayden JA, van Tulder MW, Malmivaara A, Koes BW. Exercise therapy for treatment of non-specific low back pain. Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD000335. doi: 10.1002/14651858.CD000335.pub2. PMID: 16034851; PMCID: PMC10068907.
  3. Varrassi G, Fusco M, Coaccioli S, Paladini A. Chronic pain and neurodegenerative processes in elderly people. Pain Pract. 2015 Jan;15(1):1-3. doi: 10.1111/papr.12254. Epub 2014 Oct 29. PMID: 25353291.
  4. Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet. 2017 Feb 18;389(10070):736-747. doi: 10.1016/S0140-6736(16)30970-9. Epub 2016 Oct 11. PMID: 27745712.
  5. Pangarkar SS, Kang DG, Sandbrink F, Bevevino A, Tillisch K, Konitzer L, Sall J. VA/DoD Clinical Practice Guideline: Diagnosis and Treatment of Low Back Pain. J Gen Intern Med. 2019 Nov;34(11):2620-2629. doi: 10.1007/s11606-019-05086-4. Epub 2019 Sep 16. PMID: 31529375; PMCID: PMC6848394.
  6. Freo U, Ruocco C, Valerio A, Scagnol I, Nisoli E. Paracetamol: A Review of Guideline Recommendations. J Clin Med. 2021 Jul 31;10(15):3420. doi: 10.3390/jcm10153420. PMID: 34362203; PMCID: PMC8347233.
  7. Atlas SJ, Deyo RA. Evaluating and managing acute low back pain in the primary care setting. J Gen Intern Med. 2001 Feb;16(2):120-31. doi: 10.1111/j.1525-1497.2001.91141.x. PMID: 11251764; PMCID: PMC1495170.
  8. Urits I, Burshtein A, Sharma M, Testa L, Gold PA, Orhurhu V, Viswanath O, Jones MR, Sidransky MA, Spektor B, Kaye AD. Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment. Curr Pain Headache Rep. 2019 Mar 11;23(3):23. doi: 10.1007/s11916-019-0757-1. PMID: 30854609.
  9. Witenko C, Moorman-Li R, Motycka C, Duane K, Hincapie-Castillo J, Leonard P, Valaer C. Considerations for the appropriate use of skeletal muscle relaxants for the management of acute low back pain. P T. 2014 Jun;39(6):427-35. PMID: 25050056; PMCID: PMC4103716.
  10. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021 Jul;8(2):e188-e194. doi: 10.7861/fhj.2021-0095. PMID: 34286183; PMCID: PMC8285156.
  11. Lifschitz V. John McCarthy (1927-2011). Nature. 2011 Nov 30;480(7375):40. doi: 10.1038/480040a. PMID: 22129718.
  12. Rahman S, Sarker S, Haque AKMN, Uttsha MM, Islam MF, Deb S. AI-Driven Stroke Rehabilitation Systems and Assessment: A Systematic Review. IEEE Trans Neural Syst Rehabil Eng. 2023;31:192-207. doi: 10.1109/TNSRE.2022.3219085. Epub 2023 Jan 30. PMID: 36327176.
  13. Priya PK. AI-powered rehabilitation: Innovations in physical therapy and recovery. Int J Med Inform AI. 2024;4. Available from: https://journalpublication.wrcouncil.org/index.php/IJMIAI/article/view/73
  14. Huber FA, Guggenberger R. AI MSK clinical applications: spine imaging. Skeletal Radiol. 2022 Feb;51(2):279-291. doi: 10.1007/s00256-021-03862-0. Epub 2021 Jul 15. PMID: 34263344; PMCID: PMC8692301.
  15. Cascella M, Schiavo D, Cuomo A, Ottaiano A, Perri F, Patrone R, Migliarelli S, Bignami EG, Vittori A, Cutugno F. Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives. Pain Res Manag. 2023 Jun 28;2023:6018736. doi: 10.1155/2023/6018736. PMID: 37416623; PMCID: PMC10322534.
  16. Mari T, Henderson J, Maden M, Nevitt S, Duarte R, Fallon N. Systematic Review of the Effectiveness of Machine Learning Algorithms for Classifying Pain Intensity, Phenotype or Treatment Outcomes Using Electroencephalogram Data. J Pain. 2022 Mar;23(3):349-369. doi: 10.1016/j.jpain.2021.07.011. Epub 2021 Aug 21. PMID: 34425248.
  17. D'Antoni F, Russo F, Ambrosio L, Bacco L, Vollero L, Vadalà G, Merone M, Papalia R, Denaro V. Artificial Intelligence and Computer Aided Diagnosis in Chronic Low Back Pain: A Systematic Review. Int J Environ Res Public Health. 2022 May 14;19(10):5971. doi: 10.3390/ijerph19105971. PMID: 35627508; PMCID: PMC9141006.
  18. Lee J, Mawla I, Kim J, Loggia ML, Ortiz A, Jung C, Chan ST, Gerber J, Schmithorst VJ, Edwards RR, Wasan AD, Berna C, Kong J, Kaptchuk TJ, Gollub RL, Rosen BR, Napadow V. Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain. 2019 Mar;160(3):550-560. doi: 10.1097/j.pain.0000000000001417. PMID: 30540621; PMCID: PMC6377310.
  19. Lamichhane B, Jayasekera D, Jakes R, Glasser MF, Zhang J, Yang C, Grimes D, Frank TL, Ray WZ, Leuthardt EC, Hawasli AH. Multi-modal biomarkers of low back pain: A machine learning approach. Neuroimage Clin. 2021;29:102530. doi: 10.1016/j.nicl.2020.102530. Epub 2020 Dec 8. PMID: 33338968; PMCID: PMC7750450.
  20. Lamichhane B, Jayasekera D, Jakes R, Ray WZ, Leuthardt EC, Hawasli AH. Functional Disruptions of the Brain in Low Back Pain: A Potential Imaging Biomarker of Functional Disability. Front Neurol. 2021 Jul 14;12:669076. doi: 10.3389/fneur.2021.669076. PMID: 34335444; PMCID: PMC8317987.
  21. Shen W, Tu Y, Gollub RL, Ortiz A, Napadow V, Yu S, Wilson G, Park J, Lang C, Jung M, Gerber J, Mawla I, Chan ST, Wasan AD, Edwards RR, Kaptchuk T, Li S, Rosen B, Kong J. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. Neuroimage Clin. 2019;22:101775. doi: 10.1016/j.nicl.2019.101775. Epub 2019 Mar 14. PMID: 30927604; PMCID: PMC6444301.
  22. Staartjes VE, Quddusi A, Klukowska AM, Schröder ML. Initial classification of low back and leg pain based on objective functional testing: a pilot study of machine learning applied to diagnostics. Eur Spine J. 2020 Jul;29(7):1702-1708. doi: 10.1007/s00586-020-06343-5. Epub 2020 Feb 18. PMID: 32072271.
  23. Caza-Szoka M, Massicotte D, Nougarou F, Descarreaux M. Surrogate analysis of fractal dimensions from SEMG sensor array as a predictor of chronic low back pain. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6409-6412. doi: 10.1109/EMBC.2016.7592195. PMID: 28269714.
  24. Abdollahi M, Ashouri S, Abedi M, Azadeh-Fard N, Parnianpour M, Khalaf K, Rashedi E. Using a Motion Sensor to Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach. Sensors (Basel). 2020 Jun 26;20(12):3600. doi: 10.3390/s20123600. PMID: 32604794; PMCID: PMC7348921.
  25. Bishop JB, Szpalski M, Ananthraman SK, McIntyre DR, Pope MH. Classification of low back pain from dynamic motion characteristics using an artificial neural network. Spine (Phila Pa 1976). 1997 Dec 15;22(24):2991-8. doi: 10.1097/00007632-199712150-00024. PMID: 9431637.
  26. Sari M, Gulbandilar E, Cimbiz A. Prediction of low back pain with two expert systems. J Med Syst. 2012 Jun;36(3):1523-7. doi: 10.1007/s10916-010-9613-x. Epub 2010 Oct 27. PMID: 20978929.
  27. Hartmann R, Avermann F, Zalpour C, Griefahn A. Impact of an AI app-based exercise program for people with low back pain compared to standard care: A longitudinal cohort-study. Health Sci Rep. 2023 Jan 12;6(1):e1060. doi: 10.1002/hsr2.1060. PMID: 36660258; PMCID: PMC9837473.
  28. Zsarnoczky-Dulhazi F, Agod S, Szarka S, Tuza K, Kopper B. AI based motion analysis software for sport and physical therapy assessment. Rev Bras Med Esporte. 2024;30:1–5. doi:10.1590/1517-8692202430012022_0020p
  29. Priebe JA, Haas KK, Moreno Sanchez LF, Schoefmann K, Utpadel-Fischler DA, Stockert P, Thoma R, Schiessl C, Kerkemeyer L, Amelung V, Jedamzik S, Reichmann J, Marschall U, Toelle TR. Digital Treatment of Back Pain versus Standard of Care: The Cluster-Randomized Controlled Trial, Rise-uP. J Pain Res. 2020 Jul 17;13:1823-1838. doi: 10.2147/JPR.S260761. PMID: 32765057; PMCID: PMC7381830.
  30. Do K, Kawana E, Vachirakorntong B, Do J, Seibel R. The use of artificial intelligence in treating chronic back pain. Korean J Pain. 2023 Oct 1;36(4):478-480. doi: 10.3344/kjp.23239. PMID: 37752668; PMCID: PMC10551394.
  31. Anan T, Kajiki S, Oka H, Fujii T, Kawamata K, Mori K, Matsudaira K. Effects of an Artificial Intelligence-Assisted Health Program on Workers With Neck/Shoulder Pain/Stiffness and Low Back Pain: Randomized Controlled Trial. JMIR Mhealth Uhealth. 2021 Sep 24;9(9):e27535. doi: 10.2196/27535. PMID: 34559054; PMCID: PMC8501409.
  32. Rughani G, Nilsen TIL, Wood K, Mair FS, Hartvigsen J, Mork PJ, Nicholl BI. The selfBACK artificial intelligence-based smartphone app can improve low back pain outcome even in patients with high levels of depression or stress. Eur J Pain. 2023 May;27(5):568-579. doi: 10.1002/ejp.2080. Epub 2023 Jan 27. PMID: 36680381.
  33. Alzouhayli K, Schilaty ND, Nagai T, Rigamonti L, McPherson AL, Holmes B, et al. Artificial intelligence-guided therapy: Clinic versus home users. Long-term differences in patient-reported outcomes in patients with low back pain. J Orthop Rep. 2025;4(2 Suppl):100592.
  34. Oude Nijeweme-d'Hollosy W, van Velsen L, Poel M, Groothuis-Oudshoorn CGM, Soer R, Hermens H. Evaluation of three machine learning models for self-referral decision support on low back pain in primary care. Int J Med Inform. 2018 Feb;110:31-41. doi: 10.1016/j.ijmedinf.2017.11.010. Epub 2017 Nov 23. PMID: 29331253.
  35. Marcuzzi A, Nordstoga AL, Bach K, Aasdahl L, Nilsen TIL, Bardal EM, Boldermo NØ, Falkener Bertheussen G, Marchand GH, Gismervik S, Mork PJ. Effect of an Artificial Intelligence-Based Self-Management App on Musculoskeletal Health in Patients With Neck and/or Low Back Pain Referred to Specialist Care: A Randomized Clinical Trial. JAMA Netw Open. 2023 Jun 1;6(6):e2320400. doi: 10.1001/jamanetworkopen.2023.20400. PMID: 37368401; PMCID: PMC10300712.
  36. Casiano VE, Sarwan G, Dydyk AM, Varacallo MA. Back Pain. 2023 Dec 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30844200.
  37. Huber FA, Guggenberger R. AI MSK clinical applications: spine imaging. Skeletal Radiol. 2022 Feb;51(2):279-291. doi: 10.1007/s00256-021-03862-0. Epub 2021 Jul 15. PMID: 34263344; PMCID: PMC8692301.
  38. Hu Y, Kwok JW, Tse JY, Luk KD. Time-varying surface electromyography topography as a prognostic tool for chronic low back pain rehabilitation. Spine J. 2014 Jun 1;14(6):1049-56. doi: 10.1016/j.spinee.2013.11.060. Epub 2014 Feb 12. PMID: 24530438.
  39. Jarvik JG, Gold LS, Tan K, Friedly JL, Nedeljkovic SS, Comstock BA, Deyo RA, Turner JA, Bresnahan BW, Rundell SD, James KT, Nerenz DR, Avins AL, Bauer Z, Kessler L, Heagerty PJ. Long-term outcomes of a large, prospective observational cohort of older adults with back pain. Spine J. 2018 Sep;18(9):1540-1551. doi: 10.1016/j.spinee.2018.01.018. Epub 2018 Jan 31. PMID: 29391206.
  40. Azimi P, Mohammadi HR, Benzel EC, Shahzadi S, Azhari S, Montazeri A. Artificial neural networks in neurosurgery. J Neurol Neurosurg Psychiatry. 2015 Mar;86(3):251-6. doi: 10.1136/jnnp-2014-307807. Epub 2014 Jul 1. PMID: 24987050.
  41. Nolting J. Developing a neural network model for health care. AMIA Annu Symp Proc. 2006;2006:1049. PMID: 17238669; PMCID: PMC1839654.
  42. Muhaimil A, Pendem S, Sampathilla N, P S P, Nayak K, Chadaga K, Goswami A, M OC, Shirlal A. Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine. F1000Res. 2024 Oct 10;13:1035. doi: 10.12688/f1000research.154680.2. PMID: 39483709; PMCID: PMC11525099.
  43. Climent-Peris VJ, Martí-Bonmatí L, Rodríguez-Ortega A, Doménech-Fernández J. Predictive value of texture analysis on lumbar MRI in patients with chronic low back pain. Eur Spine J. 2023 Dec;32(12):4428-4436. doi: 10.1007/s00586-023-07936-6. Epub 2023 Sep 16. PMID: 37715790.
  44. Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR. Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis: clinical article. J Neurosurg Spine. 2014 Mar;20(3):300-5. doi: 10.3171/2013.12.SPINE13674. Epub 2014 Jan 17. PMID: 24438428.

Download Article
Received May 29, 2025.
Accepted July 12, 2025.
©2025 International Medical Research and Development Corporation.