The Role of Artificial Intelligence in Medical Imaging: From Diagnosis to Ethical Frontiers

Nouf Abuhadi

 
For citation: Abuhadi N. The Role of Artificial Intelligence in Medical Imaging: From Diagnosis to Ethical Frontiers. International Journal of Biomedicine. 2025;15(1):37-44. doi:10.21103/Article15(1)_RA5
 
Originally published March 5, 2025

Abstract: 

Artificial intelligence (AI) has made a significant difference in radiology, particularly in machine learning and deep learning approaches, for improving tasks such as image processing and X-ray detection. It relies on optimizing the operations and predictions in analytics, computer diagnostics, and image segmentation. Clinical procedures rely on personalized medication and diagnostic techniques. The challenges AI encounters in radiography include the ‘black box’ issue, accuracy of data, technological and infrastructural complexity, ethical issues such as patient privacy and data security, overreliance on AI, and bias. This article determines the various aspects involved in the use of AI in medical diagnosis (radiological), summarizes the performance of AI in detecting and diagnosing diseases from different radiology procedures, and highlights the potential challenges and ethical issues. AI has a significant impact on radiology and highlights its huge influence on the specialty; it can be used to detect certain pathological conditions, such as cancer, Mets, liver fibrosis, and thyroid disorder. Furthermore, AI aids in assessing the progression of diseases, evaluating therapy responses, and predicting patient outcomes. In cancer treatment, AI can determine tumor size and growth over time, offering essential data for treatment planning. Artificial intelligence in radiology provides significant potential for enhancing diagnostic precision, efficiency, and workflow. However, its incorporation into clinical practice faces several challenges.

Keywords: 
artificial intelligence • radiology • healthcare • challenges • identification
References: 
  1. Mei X, Lee HC, Diao KY, Huang M, Lin B, Liu C, Xie Z, Ma Y, Robson PM, Chung M, Bernheim A, Mani V, Calcagno C, Li K, Li S, Shan H, Lv J, Zhao T, Xia J, Long Q, Steinberger S, Jacobi A, Deyer T, Luksza M, Liu F, Little BP, Fayad ZA, Yang Y. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020 Aug;26(8):1224-1228. doi: 10.1038/s41591-020-0931-3. Epub 2020 May 19. PMID: 32427924; PMCID: PMC7446729.
  2. Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, Malik K, Raza S, Abbas A, Pezzani R, Sharifi-Rad J. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021 May 21;21(1):270. doi: 10.1186/s12935-021-01981-1. PMID: 34020642; PMCID: PMC8139146.
  3. Briganti G, Le Moine O. Artificial Intelligence in Medicine: Today and Tomorrow. Front Med (Lausanne). 2020 Feb 5;7:27. doi: 10.3389/fmed.2020.00027. PMID: 32118012; PMCID: PMC7012990.
  4. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2023;14(7):8459-8486. doi: 10.1007/s12652-021-03612-z. Epub 2022 Jan 13. PMID: 35039756; PMCID: PMC8754556.
  5. Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, Zhao J, Snowdon JL. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021 Jan;14(1):86-93. doi: 10.1111/cts.12884. Epub 2020 Oct 12. PMID: 32961010; PMCID: PMC7877825.
  6. Husnain A, Hussain HK, Shahroz HM, Ali M, Hayat Y. Advancements in Health through Artificial Intelligence and Machine Learning: A Focus on Brain Health. Rev Esp Doc Científica. 2024;18(1):100–123
  7. Lee D, Yoon SN. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. Int J Environ Res Public Health. 2021 Jan 1;18(1):271. doi: 10.3390/ijerph18010271. PMID: 33401373; PMCID: PMC7795119.
  8. Shinji T. The challenge to develop and implement artificial intelligence (AI) technologies in health and medical care in Japan. J Natl Inst Public Health. 2023;72:2–13
  9. Zhang S, Yu J, Xu X, Yin C, Lu Y, Yao B, Tory M, Padilla LM, Caterino J, Zhang P, Wang D. Rethinking Human-AI Collaboration in Complex Medical Decision Making: A Case Study in Sepsis Diagnosis. Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024:445. doi: 10.1145/3613904.3642343. Epub 2024 May 11. PMID: 38835626; PMCID: PMC11149368.
  10. Jussupow E, Spohrer K, Heinzl A, et al. Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence. Inf Syst Res. 2021;32(3):713–735
  11. Bhagat IA, Wankhede  KG, Kopawar  NA, Sanase DA. Artificial Intelligence in Healthcare: A Review. Int J Sci Res Sci Eng Technol. 2024;11(4):133–138
  12. Chatterjee I, Ghosh R, Sarkar S, Kundu M. Revolutionizing Innovations and Impact of Artificial Intelligence in Healthcare. Int J Multidiscip Res. 2024;6(3):19333
  13. Talati D. AI in healthcare domain. J Knowl Learn Sci Techno. 2023;2(3):256–262.
  14. Rathore FA, Rathore MA. The Emerging Role of Artificial Intelligence in Healthcare. J Pak Med Assoc. 2023 Jul;73(7):1368-1369. doi: 10.47391/JPMA.23-48. PMID: 37469045.
  15. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, Aldairem A, Alrashed M, Bin Saleh K, Badreldin HA, Al Yami MS, Al Harbi S, Albekairy AM. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023 Sep 22;23(1):689. doi: 10.1186/s12909-023-04698-z. PMID: 37740191; PMCID: PMC10517477.
  16. Iqbal J, Cortés Jaimes DC, Makineni P, Subramani S, Hemaida S, Thugu TR, Butt AN, Sikto JT, Kaur P, Lak MA, Augustine M, Shahzad R, Arain M. Reimagining Healthcare: Unleashing the Power of Artificial Intelligence in Medicine. Cureus. 2023 Sep 4;15(9):e44658. doi: 10.7759/cureus.44658. PMID: 37799217; PMCID: PMC10549955.
  17. Bejarano A. The Benefits of Artificial Intelligence in Radiology: Transforming Healthcare through Enhanced Diagnostics and Workflow Efficiency. Rev Contemp Sci Acad Stud. 2023; 16;3(8).
  18. Wani TR, Reshi MS. Revolutionizing Radiology: Exploring Applications and Advancements in AI for Imaging Diagnostics. Int J Multidiscip Res. 2023;5(6):10291
  19. Gampala S, Vankeshwaram V, Gadula SSP. Is Artificial Intelligence the New Friend for Radiologists? A Review Article. Cureus. 2020 Oct 24;12(10):e11137. doi: 10.7759/cureus.11137. PMID: 33240726; PMCID: PMC7682942.
  20. Santhosh C. Revolutionizing Healthcare: The Transformative Power of Artificial Intelligence. Int J Res Appl Sci Eng Technol. 2024;12(5):1581–1586
  21. Umapathy VR, Rajinikanth B S, Samuel Raj RD, Yadav S, Munavarah SA, Anandapandian PA, Mary AV, Padmavathy K, R A. Perspective of Artificial Intelligence in Disease Diagnosis: A Review of Current and Future Endeavours in the Medical Field. Cureus. 2023 Sep 21;15(9):e45684. doi: 10.7759/cureus.45684. PMID: 37868519; PMCID: PMC10590060.
  22. Moorthi PV. Artificial Intelligence Applications in Genetic Disease/Syndrome Diagnosis. Artificial Intelligence Theory, Models, and Applications. Internet 1st ed Boca Raton: Auerbach Publications; 2022:143–157.
  23. Aamir A, Iqbal A, Jawed F, Ashfaque F, Hafsa H, Anas Z, Oduoye MO, Basit A, Ahmed S, Abdul Rauf S, Khan M, Mansoor T. Exploring the current and prospective role of artificial intelligence in disease diagnosis. Ann Med Surg (Lond). 2024 Jan 4;86(2):943-949. doi: 10.1097/MS9.0000000000001700. PMID: 38333305; PMCID: PMC10849462.
  24. Ghaffar Nia N, Kaplanoglu E, Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discov Artif Intell. 2023;3(1):5. doi: 10.1007/s44163-023-00049-5. Epub 2023 Jan 30. PMCID: PMC9885935.
  25. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5. PMID: 29777175; PMCID: PMC6268174.
  26. Yordanova MZ. The Applications of Artificial Intelligence in Radiology: Opportunities and Challenges. Eur J Med Health Sci. 2024;6(2):11–14
  27. Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics (Basel). 2023 Aug 25;13(17):2760. doi: 10.3390/diagnostics13172760. PMID: 37685300; PMCID: PMC10487271.
  28. Martín Noguerol T, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A. Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology. J Am Coll Radiol. 2019 Sep;16(9 Pt B):1239-1247. doi: 10.1016/j.jacr.2019.05.047. PMID: 31492401.
  29. Bejarano A. The Benefits of Artificial Intelligence in Radiology: Transforming Healthcare through Enhanced Diagnostics and Workflow Efficiency. Rev Contemp Sci Acad Stud. 2023; Nov 22;3(8).
  30. Lee RY, Wu Y, Goh D, Tan V, Ng CW, Lim JCT, Lau MC, Yeong JPS. Application of Artificial Intelligence to In Vitro Tumor Modeling and Characterization of the Tumor Microenvironment. Adv Healthc Mater. 2023 Jun;12(14):e2202457. doi: 10.1002/adhm.202202457. Epub 2023 Apr 26. PMID: 37060240.
  31. Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol. 2022 Feb;19(2):132-146. doi: 10.1038/s41571-021-00560-7. Epub 2021 Oct 18. PMID: 34663898; PMCID: PMC9034765.
  32. Johnson D, Goodman R, Patrinely J, Stone C, Zimmerman E, Donald R, et al. Assessing the Accuracy and Reliability of AI-Generated Medical Responses: An Evaluation of the Chat-GPT Model. Res Sq [Preprint]. 2023 Feb 28:rs.3.rs-2566942. doi: 10.21203/rs.3.rs-2566942/v1. PMID: 36909565; PMCID: PMC10002821.
  33. Liu F, Zhang Q, Huang C, Shi C, Wang L, Shi N, Fang C, Shan F, Mei X, Shi J, Song F, Yang Z, Ding Z, Su X, Lu H, Zhu T, Zhang Z, Shi L, Shi Y. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020 Apr 27;10(12):5613-5622. doi: 10.7150/thno.45985. PMID: 32373235; PMCID: PMC7196293.
  34. Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering (Basel). 2024 Mar 29;11(4):337. doi: 10.3390/bioengineering11040337. PMID: 38671759; PMCID: PMC11047988.
  35. Frid-Adar M, Amer R, Gozes O, Nassar J, Greenspan H. COVID-19 in CXR: From Detection and Severity Scoring to Patient Disease Monitoring. IEEE J Biomed Health Inform. 2021 Jun;25(6):1892-1903. doi: 10.1109/JBHI.2021.3069169. Epub 2021 Jun 3. PMID: 33769939; PMCID: PMC8545163.
  36. Chen Y, Schonlieb C-B, Lio P, Leiner T. AI-Based Reconstruction for Fast MRI—A Systematic Review and Meta-Analysis. Proc IEEE 2022;110(2):224–245.
  37. Fusco R, Grassi R, Granata V, Setola SV, Grassi F, Cozzi D, Pecori B, Izzo F, Petrillo A. Artificial Intelligence and COVID-19 Using Chest CT Scan and Chest X-ray Images: Machine Learning and Deep Learning Approaches for Diagnosis and Treatment. J Pers Med. 2021 Sep 30;11(10):993. doi: 10.3390/jpm11100993. PMID: 34683133; PMCID: PMC8540782.
  38. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE J Biomed Health Inform. 2020 Jul;24(7):1837-1857. doi: 10.1109/JBHI.2020.2991043. PMID: 32609615; PMCID: PMC8580417.
  39. Liu Y, Zhang F, Chen C, Wang S, Wang Y, Yu Y. Act Like a Radiologist: Towards Reliable Multi-View Correspondence Reasoning for Mammogram Mass Detection. IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):5947-5961. doi: 10.1109/TPAMI.2021.3085783. Epub 2022 Sep 14. PMID: 34061740.
  40. Medhi K, Jamil Md, Hussain I. Automatic Detection of COVID-19 Infection from Chest X-ray using Deep Learning. Internet Health Informatics; 2020.
  41. Alqudah AM, Qazan S, Alqudah A. Automated Systems for Detection of COVID-19 Using Chest X-ray Images and Lightweight Convolutional Neural Networks. Res Sq preprint, version 1, posted 2020 April 27
  42. Nayak SR, Nayak DR, Sinha U, Arora V, Pachori RB. Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomed Signal Process Control. 2021 Feb;64:102365. doi: 10.1016/j.bspc.2020.102365. Epub 2020 Nov 19. PMID: 33230398; PMCID: PMC7674150.
  43. Zouch W, Sagga D, Echtioui A, Khemakhem R, Ghorbel M, Mhiri C, Hamida AB. Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models. Ann Biomed Eng. 2022 Jul;50(7):825-835. doi: 10.1007/s10439-022-02958-5. Epub 2022 Apr 12. PMID: 35415768; PMCID: PMC9005164.
  44. Li H, Weng J, Shi Y, Gu W, Mao Y, Wang Y, Liu W, Zhang J. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Sci Rep. 2018 Apr 26;8(1):6600. doi: 10.1038/s41598-018-25005-7. PMID: 29700427; PMCID: PMC5920067.
  45. Vasile CM, Udriştoiu AL, Ghenea AE, Padureanu V, Udriştoiu Ş, Gruionu LG, Gruionu G, Iacob AV, Popescu M. Assessment of Deep Learning Methods for Differentiating Autoimmune Disorders in Ultrasound Images. Curr Health Sci J. 2021 Apr-Jun;47(2):221-227. doi: 10.12865/CHSJ.47.02.12. Epub 2021 Jun 30. PMID: 34765242; PMCID: PMC8551890.
  46. Liao CW, Hsieh TC, Lai YC, Hsu YJ, Hsu ZK, Chan PK, Kao CH. Artificial Intelligence of Object Detection in Skeletal Scintigraphy for Automatic Detection and Annotation of Bone Metastases. Diagnostics (Basel). 2023 Feb 12;13(4):685. doi: 10.3390/diagnostics13040685. PMID: 36832173; PMCID: PMC9955026.
  47. Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, Zhang W, Zhong X, Zhou K, Li Y, Li L, Yi Z, Cai H. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep. 2020 Oct 12;10(1):17046. doi: 10.1038/s41598-020-74135-4. PMID: 33046779; PMCID: PMC7550561.
  48. Zheng S, He K, Zhang L, Li M, Zhang H, Gao P. Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging. Eur J Radiol. 2023 Aug;165:110912. doi: 10.1016/j.ejrad.2023.110912. Epub 2023 Jun 2. PMID: 37290363.
  49. Raimondo D, Raffone A, Aru AC, Giorgi M, Giaquinto I, Spagnolo E, Travaglino A, Galatolo FA, Cimino MGCA, Lenzi J, Centini G, Lazzeri L, Mollo A, Seracchioli R, Casadio P. Application of Deep Learning Model in the Sonographic Diagnosis of Uterine Adenomyosis. Int J Environ Res Public Health. 2023 Jan 18;20(3):1724. doi: 10.3390/ijerph20031724. PMID: 36767092; PMCID: PMC9914280.
  50. Lamrani D, Hamida S, Bouqentar MA, et al. U-Net-based Artificial Intelligence for Accurate and Robust Brain Tumor Diagnosis using Magnetic Resonance Imaging. Proc 6th Int Conf Netw Intell Syst Secur Internet Larache Morocco: ACM; 2023 .
  51. Tasya Evitasari F. ARTIFICIAL INTELLIGENCE IN RADIOLOGY: SYSTEMATIC REVIEW. J Adv Res Med Health Sci. 2023;9(12):115–124.
  52. Kelly BS, Judge C, Bollard SM, Clifford SM, Healy GM, Aziz A, Mathur P, Islam S, Yeom KW, Lawlor A, Killeen RP. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol. 2022 Nov;32(11):7998-8007. doi: 10.1007/s00330-022-08784-6. Epub 2022 Apr 14. Erratum in: Eur Radiol. 2022 Nov;32(11):8054. doi: 10.1007/s00330-022-08832-1. PMID: 35420305; PMCID: PMC9668941.
  53. Srivastav S, Chandrakar R, Gupta S, Babhulkar V, Agrawal S, Jaiswal A, Prasad R, Wanjari MB. ChatGPT in Radiology: The Advantages and Limitations of Artificial Intelligence for Medical Imaging Diagnosis. Cureus. 2023 Jul 6;15(7):e41435. doi: 10.7759/cureus.41435. PMID: 37546142; PMCID: PMC10404120.
  54. Ozcan BB, Patel BK, Banerjee I, Dogan BE. Artificial Intelligence in Breast Imaging: Challenges of Integration Into Clinical Practice. J Breast Imaging. 2023 May 22;5(3):248-257. doi: 10.1093/jbi/wbad007. PMID: 38416888.
  55. Román-Belmonte JM, Corte-Rodríguez H, Rodríguez-Merchán EC. Artificial intelligence in musculoskeletal conditions. Front Biosci (Landmark Ed). 2021 Nov 30;26(11):1340-1348. doi: 10.52586/5027. PMID: 34856771.
  56. Bousson V, Benoist N, Guetat P, Attané G, Salvat C, Perronne L. Application of artificial intelligence to imaging interpretations in the musculoskeletal area: Where are we? Where are we going? Joint Bone Spine. 2023 Jan;90(1):105493. doi: 10.1016/j.jbspin.2022.105493. Epub 2022 Nov 21. PMID: 36423783.
  57. Kumar M, Nigam A, Singh SV, Analysis of hybrid fuzzy-neuro model for diagnosis of depression. Recent Adv Comput Intell Cyber Secur. Int Conf Comput Intell Cyber Secur P 36): CRC Press; 2024
  58. Abbas S, Shafik DR, Soomro PN, et al From algorithms to Outcomes: Reviewing AI’s role in non-muscle-invasive bladder cancer recurrence prediction. ARXIV RESEARCH PAPERS. 2024
  59. Alaraimi S, Al Naimi I, Manic S, et al Enhancing brain tumor assessment: A comprehensive approach using computerized diagnostic tool and advanced MRI techniques. Procedia Comput Sci. 2024; 235:3350–3368
  60. Alqhtani SM, Soomro TA, Ali A, et al Improved brain tumor segmentation and classification in brain MRI with FCM-SVM: A diagnostic approach. IEEE Access 2024; 12:61312–61335.
  61. Singh LK, Khanna M, Garg H, et al. A novel soft computing based efficient feature selection approach for timely identification of COVID-19 infection using chest computed tomography images: a human centered intelligent clinical decision support system. Multimed Tools Appl. 2024;1–69.
  62. Rabie AH, Mohamed AM, Abo-Elsoud MA, Saleh AI. A new Covid-19 diagnosis strategy using a modified KNN classifier. Neural Comput Appl. 2023 May 2:1-25. doi: 10.1007/s00521-023-08588-9. Epub ahead of print. PMID: 37362572; PMCID: PMC10153048.
  63. Choi JR, Kim S. Predicting individuals’ privacy protection and self-tracking behaviors in the context of smart health. Telemat Inform. 2024;82:102069
  64. Boldi A, Silacci A, Boldi MO, et al Exploring the impact of commercial wearable activity trackers on body awareness and body representations: A mixed-methods study on self-tracking. Comput Hum Behav. 2024;151:108036
  65. Albahri AS, Duhaim AM, Fadhel MA, et al A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality bias risk and data fusion. Inf Fusion. 2023;96:156–191.
  66. Anikwe CV, Nweke HF, Ikegwu AC, et al Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect. Expert Syst Appl. 2022;202:117362
  67. Shumba AT, Montanaro T, Sergi I, Fachechi L, De Vittorio M, Patrono L. Leveraging IoT-Aware Technologies and AI Techniques for Real-Time Critical Healthcare Applications. Sensors (Basel). 2022 Oct 10;22(19):7675. doi: 10.3390/s22197675. PMID: 36236773; PMCID: PMC9571691.
  68. Zaman U, Imran MF, Iqbal N, et al Towards secure and intelligent internet of health things: A survey of enabling technologies and applications. Electronics. 2022;11(12):1893.
  69. Krittanawong C, Aydar M, Hassan Virk HU, Kumar A, Kaplin S, Guimaraes L, Wang Z, Halperin JL. Artificial Intelligence-Powered Blockchains for Cardiovascular Medicine. Can J Cardiol. 2022 Feb;38(2):185-195. doi: 10.1016/j.cjca.2021.11.011. Epub 2021 Nov 30. PMID: 34856332.
  70. Ali A, Almaiah MA, Hajjej F, Pasha MF, Fang OH, Khan R, Teo J, Zakarya M. An Industrial IoT-Based Blockchain-Enabled Secure Searchable Encryption Approach for Healthcare Systems Using Neural Network. Sensors (Basel). 2022 Jan 12;22(2):572. doi: 10.3390/s22020572. PMID: 35062530; PMCID: PMC8779424.
  71. Zaabar B, Cheikhrouhou O, Jamil F, et al HealthBlock: A secure blockchain-based healthcare data management system. Comput Netw. 2021;200:108500
  72. Ullah A, Azeem M, Ashraf H, et a.l Secure healthcare data aggregation and transmission in IoT-A survey. IEEE Access. 2021;9:16849–16865.
  73. Kundi B, El Morr C, Gorman R, et al Artificial intelligence and bias: a scoping review. Chapman and Hall/CRC: AI and Society; 2023.
  74. Chen P, Wu L, Wang L. AI fairness in data management and analytics: A review on challenges methodologies and applications. Appl Sci. 2023;13(18):10258.
  75. Agarwal R. Bjarnadottir M. Rhue L. et al Addressing algorithmic bias and the perpetuation of health inequities: An AI bias aware framework. Health Policy Technol. 2023;12(1):100702.
  76. Nazer LH, Zatarah R, Waldrip S, Ke JXC, Moukheiber M, Khanna AK, Hicklen RS, Moukheiber L, Moukheiber D, Ma H, Mathur P. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit Health. 2023 Jun 22;2(6):e0000278. doi: 10.1371/journal.pdig.0000278. PMID: 37347721; PMCID: PMC10287014.
  77. Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The future of early cancer detection. Nat Med. 2022 Apr;28(4):666-677. doi: 10.1038/s41591-022-01746-x. Epub 2022 Apr 19. PMID: 35440720.
  78. Tejani AS, Ng YS, Xi Y, Rayan JC. Understanding and Mitigating Bias in Imaging Artificial Intelligence. Radiographics. 2024 May;44(5):e230067. doi: 10.1148/rg.230067. PMID: 38635456.
  79. González-Sendino R, Serrano E, Bajo J, et al A review of bias and fairness in artificial intelligence. Int J Interact Multimed Artif Intell. 2023.
  80. O’Connor S, Liu H. Gender bias perpetuation and mitigation in AI technologies: challenges and opportunities. AI & Society; 2023.
  81. Zahoor I, Ihtsham S, Ramzan U, et al. AI-driven healthcare delivery in Pakistan: A framework for systemic improvement. Proc ACM SIGCASSIGCHI Conf Comput Sustain Soc; 2024.
  82. Germani A. The politics of artificial intelligence in healthcare: Diagnosis and treatment. Chapman and Hall/CRC: AI and Society; 2023.
  83. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, Aldairem A, Alrashed M, Bin Saleh K, Badreldin HA, Al Yami MS, Al Harbi S, Albekairy AM. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023 Sep 22;23(1):689. doi: 10.1186/s12909-023-04698-z. PMID: 37740191; PMCID: PMC10517477.
  84. Nadella GS, Satish S, Meduri K, et al A systematic literature review of advancements challenges and future directions of AI And ML in healthcare. Int J Mach Learn Sustain Dev. 2023;5(3):115–130.
  85. Manickam P, Mariappan SA, Murugesan SM, Hansda S, Kaushik A, Shinde R, Thipperudraswamy SP. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors (Basel). 2022 Jul 25;12(8):562. doi: 10.3390/bios12080562. PMID: 35892459; PMCID: PMC9330886.
  86. Karalis VD. The integration of artificial intelligence into clinical practice. Appl Biosci. 2024;3(1):14–44.
  87. Jatoi I, Shaaban AM, Jou E, Benson JR. The Biology and Management of Ductal Carcinoma in Situ of the Breast. Curr Probl Surg. 2023 Aug;60(8):101361. doi: 10.1016/j.cpsurg.2023.101361. Epub 2023 Jul 6. PMID: 37596033.
  88. Dawes DE, Amador CM, Dunlap NJ. The political determinants of health: a global panacea for health inequities. Res Encycl Glob Public Health Oxford; 2022.
  89. von Gerich H, Moen H, Block LJ, Chu CH, DeForest H, Hobensack M, Michalowski M, Mitchell J, Nibber R, Olalia MA, Pruinelli L, Ronquillo CE, Topaz M, Peltonen LM. Artificial Intelligence -based technologies in nursing: A scoping literature review of the evidence. Int J Nurs Stud. 2022 Mar;127:104153. doi: 10.1016/j.ijnurstu.2021.104153. Epub 2021 Dec 7. PMID: 35092870.
  90. Gesk TS, Leyer M. Artificial intelligence in public services: When and why citizens accept its usage. Gov Inf Q. 2022;39:101704.
  91. Khalid N, Qayyum A, Bilal M, Al-Fuqaha A, Qadir J. Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Comput Biol Med. 2023 May;158:106848. doi: 10.1016/j.compbiomed.2023.106848. Epub 2023 Apr 5. PMID: 37044052.

Download Article
Received December 5, 2024.
Accepted January 15, 2025.
©2025 International Medical Research and Development Corporation.