For citation: Hysenaj-Cakolli V, Kolgeci B, Hysenaj-Hoxha V, Kolgeci D. Role of Artificial Intelligence in Dentistry. International Journal of Biomedicine. 2025;15(2):268-272. doi:10.21103/Article15(2)_RA5
Originally published June 5, 2025
Background: The preceding decade has heralded an extraordinary technological revolution, particularly with the rise of artificial intelligence (AI), an advanced technology designed to emulate human cognitive and behavioral processes. Artificial intelligence has adeptly infiltrated virtually every domain of human endeavor, with dentistry being no exception to this overarching trend. This study aims to review the literature on the use of AI in some fields of dentistry.
Methods and Results: A comprehensive search was conducted on various electronic databases, including PubMed and Scopus, to find relevant articles written in the English language. The keywords we used were "artificial intelligence," "diagnosis," "dentistry," and "digital dentistry." The inclusion criteria for this review were as follows: all case reports, case series, original research papers, review articles, in vitro and in vivo studies, animal studies, and controlled clinical trials involving AI in dentistry-related studies.
Conclusion: Despite its advancements, AI in dentistry still faces significant challenges. Dental professionals require specialized training, many regions lack access to advanced AI technology, and patient data privacy raises ethical concerns. While AI holds great potential, it should complement human expertise rather than replace it.
Future research should focus on enhancing AI algorithms, expanding training datasets, and integrating AI seamlessly into dental practice. As technology advances, AI is poised to revolutionize dentistry by improving diagnostics and personalizing treatments.
- Lifschitz V. John McCarthy (1927-2011). Nature. 2011 Nov 30;480(7375):40. doi: 10.1038/480040a. PMID: 22129718.
- Khanagar SB, Alfouzan K, Alkadi L, Albalawi F, Iyer K, Awawdeh M. Performance of Artificial Intelligence (AI) Models Designed for Application in Pediatric Dentistry—A Systematic Review. Appl. Sci. 2022;12, 9819.
- Adnan N, Khalid WB, Umer F. An artificial intelligence model for instance segmentation and tooth numbering on orthopantomograms. Int J Comput Dent. 2023 Nov 28;26(4):301-309. doi: 10.3290/j.ijcd.b3840535. PMID: 36705317.
- Umer F. Could AI offer practical solutions for dentistry in the future? BDJ Team. 2022;9:26–28. doi: 10.1038/s41407-022-0830-1.
- Umer F, Habib S. Critical Analysis of Artificial Intelligence in Endodontics: A Scoping Review. J Endod. 2022 Feb;48(2):152-160. doi: 10.1016/j.joen.2021.11.007. Epub 2021 Nov 25. PMID: 34838523.
- Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob Health. 2018 Aug 29;3(4):e000798. doi: 10.1136/bmjgh-2018-000798. PMID: 30233828; PMCID: PMC6135465.
- Mohammad-Rahimi H, Rokhshad R, Bencharit S, Krois J, Schwendicke F. Deep learning: A primer for dentists and dental researchers. J Dent. 2023 Mar;130:104430. doi: 10.1016/j.jdent.2023.104430. Epub 2023 Jan 20. PMID: 36682721.
- Lee J, Lynch CA, Hashiguchi LO, Snow RW, Herz ND, Webster J, Parkhurst J, Erondu NA. Interventions to improve district-level routine health data in low-income and middle-income countries: a systematic review. BMJ Glob Health. 2021 Jun;6(6):e004223. doi: 10.1136/bmjgh-2020-004223. PMID: 34117009; PMCID: PMC8202107.
- Popa SL, Ismaiel A, Brata VD, Turtoi DC, Barsan M, Czako Z, Pop C, Muresan L, Stanculete MF, Dumitrascu DI. Artificial Intelligence and medical specialties: support or substitution? Med Pharm Rep. 2024 Oct;97(4):409-418. doi: 10.15386/mpr-2696. Epub 2024 Oct 30. PMID: 39502760; PMCID: PMC11534378.
- Arsiwala-Scheppach LT, Chaurasia A, Müller A, Krois J, Schwendicke F. Machine Learning in Dentistry: A Scoping Review. J Clin Med. 2023 Jan 25;12(3):937. doi: 10.3390/jcm12030937. PMID: 36769585; PMCID: PMC9918184.
- Bernauer SA, Zitzmann NU, Joda T. The Use and Performance of Artificial Intelligence in Prosthodontics: A Systematic Review. Sensors (Basel). 2021 Oct 5;21(19):6628. doi: 10.3390/s21196628. PMID: 34640948; PMCID: PMC8512216.
- Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020 Jul;99(7):769-774. doi: 10.1177/0022034520915714. Epub 2020 Apr 21. PMID: 32315260; PMCID: PMC7309354.
- Schleyer TK, Thyvalikakath TP, Spallek H, Torres-Urquidy MH, Hernandez P, Yuhaniak J. Clinical computing in general dentistry. J Am Med Inform Assoc. 2006 May-Jun;13(3):344-52. doi: 10.1197/jamia.M1990. Epub 2006 Feb 24. PMID: 16501177; PMCID: PMC1513654.
- Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med. 2018 Jul 1;98:126-146. doi: 10.1016/j.compbiomed.2018.05.018. Epub 2018 May 17. PMID: 29787940.
- Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018 Jun;45 Suppl 20:S149-S161. doi: 10.1111/jcpe.12945. Erratum in: J Clin Periodontol. 2019 Jul;46(7):787. doi: 10.1111/jcpe.13152. PMID: 29926495.
- Sivari E, Senirkentli GB, Bostanci E, Guzel MS, Acici K, Asuroglu T. Deep Learning in Diagnosis of Dental Anomalies and Diseases: A Systematic Review. Diagnostics (Basel). 2023 Jul 27;13(15):2512. doi: 10.3390/diagnostics13152512. PMID: 37568875; PMCID: PMC10416832.
- Feres M, Louzoun Y, Haber S, Faveri M, Figueiredo LC, Levin L. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles. Int Dent J. 2018 Feb;68(1):39-46. English. doi: 10.1111/idj.12326. Epub 2017 Aug 2. PMID: 28771699; PMCID: PMC9378912.
- Lee KS, Jung SK, Ryu JJ, Shin SW, Choi J. Evaluation of Transfer Learning with Deep Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs. J Clin Med. 2020 Feb 1;9(2):392. doi: 10.3390/jcm9020392. PMID: 32024114; PMCID: PMC7074309.
- Lee CT, Kabir T, Nelson J, Sheng S, Meng HW, Van Dyke TE, Walji MF, Jiang X, Shams S. Use of the deep learning approach to measure alveolar bone level. J Clin Periodontol. 2022 Mar;49(3):260-269. doi: 10.1111/jcpe.13574. Epub 2021 Dec 31. PMID: 34879437; PMCID: PMC9026777.
- Aliaga IJ, Vera V, De Paz JF, García AE, Mohamad MS. Modelling the longevity of dental restorations by means of a CBR system. Biomed Res Int. 2015;2015:540306. doi: 10.1155/2015/540306. Epub 2015 Mar 19. PMID: 25866792; PMCID: PMC4383434.
- Mangano FG, Hauschild U, Veronesi G, Imburgia M, Mangano C, Admakin O. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants: a comparative in vitro study. BMC Oral Health. 2019 Jun 6;19(1):101. doi: 10.1186/s12903-019-0792-7. PMID: 31170969; PMCID: PMC6555024.
- Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017 Dec 12;17(1):149. doi: 10.1186/s12903-017-0442-x. PMID: 29233132; PMCID: PMC5727697.
- Takahashi T, Nozaki K, Gonda T, Mameno T, Ikebe K. Deep learning-based detection of dental prostheses and restorations. Sci Rep. 2021 Jan 21;11(1):1960. doi: 10.1038/s41598-021-81202-x. PMID: 33479303; PMCID: PMC7820223.
- Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P, Nożewski J, Janiszewska-Olszowska J. AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning-A Comprehensive Review. J Clin Med. 2024 Jan 7;13(2):344. doi: 10.3390/jcm13020344. PMID: 38256478; PMCID: PMC10816993.
- Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, Srinivasan G, Aljanabi MNA, Donatelli RE, Lee SJ. Automated identification of cephalometric landmarks: Part 2-Might it be better than human?. Angle Orthod. 2020 Jan;90(1):69-76. doi: 10.2319/022019-129.1. Epub 2019 Jul 22. PMID: 31335162; PMCID: PMC8087057.
- Kim H, Shim E, Park J, Kim YJ, Lee U, Kim Y. Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed. 2020 Oct;194:105513. doi: 10.1016/j.cmpb.2020.105513. Epub 2020 May 6. PMID: 32403052.
- Lee JH, Yu HJ, Kim MJ, Kim JW, Choi J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020 Oct 7;20(1):270. doi: 10.1186/s12903-020-01256-7. PMID: 33028287; PMCID: PMC7541217.
- Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, Kim TW. Artificial Intelligent Model With Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery. J Craniofac Surg. 2019 Oct;30(7):1986-1989. doi: 10.1097/SCS.0000000000005650. Erratum in: J Craniofac Surg. 2020 Jun;31(4):1156. doi: 10.1097/SCS.0000000000006531. PMID: 31205280.
- Takada K. Artificial intelligence expert systems with neural network machine learning may assist decision-making for extractions in orthodontic treatment planning. J Evid Based Dent Pract. 2016 Sep;16(3):190-192. doi: 10.1016/j.jebdp.2016.07.002. Epub 2016 Jul 18. PMID: 27855838.
- Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop. 2016 Jan;149(1):127-33. doi: 10.1016/j.ajodo.2015.07.030. PMID: 26718386.
- Leite AF, Gerven AV, Willems H, Beznik T, Lahoud P, Gaêta-Araujo H, Vranckx M, Jacobs R. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin Oral Investig. 2021 Apr;25(4):2257-2267. doi: 10.1007/s00784-020-03544-6. Epub 2020 Aug 26. PMID: 32844259.
- Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, Jacobs R. Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography. J Endod. 2021 May;47(5):827-835. doi: 10.1016/j.joen.2020.12.020. Epub 2021 Jan 9. PMID: 33434565.
- Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, Li J. Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. J Endod. 2020 Jul;46(7):987-993. doi: 10.1016/j.joen.2020.03.025. Epub 2020 May 8. PMID: 32402466.
- Chen SL, Chen TY, Mao YC, Lin SY, Huang YY, Chen CA, Lin YJ, Hsu YM, Li CA, Chiang WY, Wong KY, Abu PAR. Automated Detection System Based on Convolution Neural Networks for Retained Root, Endodontic Treated Teeth, and Implant Recognition on Dental Panoramic Images. IEEE Sensors Journal. 2022;22(23):23293–306.
- Rasteau S, Ernenwein D, Savoldelli C, Bouletreau P. Artificial intelligence for oral and maxillo-facial surgery: A narrative review. J Stomatol Oral Maxillofac Surg. 2022 Jun;123(3):276-282. doi: 10.1016/j.jormas.2022.01.010. Epub 2022 Jan 25. PMID: 35091121.
- Siddiqui TA, Sukhia RH, Ghandhi D. Artificial intelligence in dentistry, orthodontics and Orthognathic surgery: A literature review. J Pak Med Assoc. 2022 Feb;72(Suppl 1)(2):S91-S96. doi: 10.47391/JPMA.AKU-18. PMID: 35202378.
- Vranckx M, Van Gerven A, Willems H, Vandemeulebroucke A, Ferreira Leite A, Politis C, Jacobs R. Artificial Intelligence (AI)-Driven Molar Angulation Measurements to Predict Third Molar Eruption on Panoramic Radiographs. Int J Environ Res Public Health. 2020 May 25;17(10):3716. doi: 10.3390/ijerph17103716. PMID: 32466156; PMCID: PMC7277237.
- Yoo JH, Yeom HG, Shin W, Yun JP, Lee JH, Jeong SH, Lim HJ, Lee J, Kim BC. Deep learning based prediction of extraction difficulty for mandibular third molars. Sci Rep. 2021 Jan 21;11(1):1954. doi: 10.1038/s41598-021-81449-4. PMID: 33479379; PMCID: PMC7820274.
- Rasteau S, Ernenwein D, Savoldelli C, Bouletreau P. Artificial intelligence for oral and maxillo-facial surgery: A narrative review. J Stomatol Oral Maxillofac Surg. 2022 Jun;123(3):276-282. doi: 10.1016/j.jormas.2022.01.010. Epub 2022 Jan 25. PMID: 35091121.
- Krishnan DG. Artificial Intelligence in Oral and Maxillofacial Surgery Education. Oral Maxillofac Surg Clin North Am. 2022 Nov;34(4):585-591. doi: 10.1016/j.coms.2022.03.006. Epub 2022 Oct 9. PMID: 36224076.
- Knoedler L, Miragall M, Kauke-Navarro M, Obed D, Bauer M, Tißler P, Prantl L, Machens HG, Broer PN, Baecher H, Panayi AC, Knoedler S, Kehrer A. A Ready-to-Use Grading Tool for Facial Palsy Examiners-Automated Grading System in Facial Palsy Patients Made Easy. J Pers Med. 2022 Oct 19;12(10):1739. doi: 10.3390/jpm12101739. PMID: 36294878; PMCID: PMC9605133.
- Knoedler L, Baecher H, Kauke-Navarro M, Prantl L, Machens HG, Scheuermann P, Palm C, Baumann R, Kehrer A, Panayi AC, Knoedler S. Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science. J Clin Med. 2022 Aug 25;11(17):4998. doi: 10.3390/jcm11174998. PMID: 36078928; PMCID: PMC9457271.
- Jaemsuwan S, Arunjaroensuk S, Kaboosaya B, Subbalekha K, Mattheos N, Pimkhaokham A. Comparison of the accuracy of implant position among freehand implant placement, static and dynamic computer-assisted implant surgery in fully edentulous patients: a non-randomized prospective study. Int J Oral Maxillofac Surg. 2023 Feb;52(2):264-271. doi: 10.1016/j.ijom.2022.05.009. Epub 2022 Jun 23. PMID: 35752531.
- Azeredo FN, Guimarães LS, Luís W, Fialho S, Alves Antunes LA, Antunes LS. Estimated prevalence of dental caries in athletes: An epidemiological systematic review and meta-analysis. Indian J Dent Res. 2020 Mar-Apr;31(2):297-304. doi: 10.4103/ijdr.IJDR_764_18. PMID: 32436912.
- Sadegh-Zadeh SA, Rahmani Qeranqayeh A, Benkhalifa E, Dyke D, Taylor L, Bagheri M. Dental Caries Risk Assessment in Children 5 Years Old and under via Machine Learning. Dent J (Basel). 2022 Sep 1;10(9):164. doi: 10.3390/dj10090164. PMID: 36135159; PMCID: PMC9497737.
- Zheng L, Wang H, Mei L, Chen Q, Zhang Y, Zhang H. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks. Ann Transl Med. 2021 May;9(9):763. doi: 10.21037/atm-21-119. PMID: 34268376; PMCID: PMC8246233.
- You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health. 2020 May 13;20(1):141. doi: 10.1186/s12903-020-01114-6. PMID: 32404094; PMCID: PMC7222297.
Download Article
Received March 28, 2025.
Accepted May 17, 2025.
©2025 International Medical Research and Development Corporation.