The Complex Interplay Between Alcohol Consumption and Diabetes Mellitus: Insights from Experimental Models and Clinical Studies

N. Kocharyan, I. Sahakyan, L. Grigoryan, S. Abrahamyan, N. Tumasyan

 
For citation: Kocharyan N, Sahakyan I, Grigoryan L, Abrahamyan S, Tumasyan N. The Complex Interplay Between Alcohol Consumption and Diabetes Mellitus: Insights from Experimental Models and Clinical Studies. International Journal of Biomedicine. 2025;15(4):627-633. doi:10.21103/Article15(4)_RA1
 
Originally published December 5, 2025

Abstract: 

Background: This review examines how different patterns of alcohol consumption—moderate, acute, and chronic—affect the development and management of diabetes mellitus, based on experimental and clinical studies.
Methods and Results: A comprehensive literature search was conducted across PubMed, Scopus, Web of Science, Google Scholar, and gray literature sources.  Alcohol impacts diabetes pathophysiology, notably insulin resistance and β-cell function. Chronic heavy drinking worsens glucose tolerance and promotes diabetes progression. In contrast, moderate intake with meals may enhance insulin sensitivity and reduce cardiovascular risk. Acute alcohol use, especially without food, can cause hypoglycemia. Effects vary depending on the dose, timing, and individual health.
Conclusions: Alcohol has both beneficial and harmful effects on diabetes. Moderate consumption may help, but chronic use increases risks. Personalized medical advice is essential for safe alcohol use in diabetic patients.
Background: This review examines how different patterns of alcohol consumption—moderate, acute, and chronic—affect the development and management of diabetes mellitus, based on experimental and clinical studies.
Methods and Results: A comprehensive literature search was conducted across PubMed, Scopus, Web of Science, Google Scholar, and gray literature sources.  Alcohol impacts diabetes pathophysiology, notably insulin resistance and β-cell function. Chronic heavy drinking worsens glucose tolerance and promotes diabetes progression. In contrast, moderate intake with meals may enhance insulin sensitivity and reduce cardiovascular risk. Acute alcohol use, especially without food, can cause hypoglycemia. Effects vary depending on the dose, timing, and individual health.
Conclusions: Alcohol has both beneficial and harmful effects on diabetes. Moderate consumption may help, but chronic use increases risks. Personalized medical advice is essential for safe alcohol use in diabetic patients.

Keywords: 
hyperglycemia • insulin sensitivity • cardiovascular diseases • alcohol-associated liver disease
References: 
  1. World Health Organization. Classification of diabetes mellitus. 21 April 2019. https://www.who.int/publications/i/item/classification-of-diabetes-mellitus
  2. Tang W, Liang H, Cheng Y, Yuan J, Huang G, Zhou Z, Yang L. Diagnostic value of combined islet antigen-reactive T cells and autoantibodies assays for type 1 diabetes mellitus. J Diabetes Investig. 2021 Jun;12(6):963-969. doi: 10.1111/jdi.13440. Epub 2020 Nov 27. PMID: 33064907; PMCID: PMC8169367.
  3. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014 Mar 22;383(9922):1068-83. doi: 10.1016/S0140-6736(13)62154-6. Epub 2013 Dec 3. PMID: 24315620; PMCID: PMC4226760.
  4. Ke C, Narayan KMV, Chan JCN, Jha P, Shah BR. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat Rev Endocrinol. 2022 Jul;18(7):413-432. doi: 10.1038/s41574-022-00669-4. Epub 2022 May 4. PMID: 35508700; PMCID: PMC9067000.
  5. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Cusi K, Das SR, Gibbons CH, Giurini JM, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Kosiborod M, Leon J, Lyons SK, Murdock L, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Sun JK, Woodward CC, Young-Hyman D, Gabbay RA, on behalf of the American Diabetes Association. Summary of Revisions: Standards of Care in Diabetes-2023. Diabetes Care. 2023 Jan 1;46(Suppl 1):S5-S9. doi: 10.2337/dc23-Srev. PMID: 36507641; PMCID: PMC9810459.
  6. Mota RI, Morgan SE, Bahnson EM. Diabetic vasculopathy: macro and microvascular injury. Curr Pathobiol Rep. 2020 Mar;8(1):1-14. doi: 10.1007/s40139-020-00205-x. Epub 2020 Jan 27. PMID: 32655983; PMCID: PMC7351096.
  7. Mizukami H. Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy. Pathol Int. 2024 Aug;74(8):438-453. doi: 10.1111/pin.13458. Epub 2024 Jun 18. PMID: 38888200; PMCID: PMC11551828.
  8. Peng L, Wang Y, Zhao C, Zhao Z, Fei Q, Xin P, Xu H, Cao Y. A Comparative Study of Xi's Tendon Gangrene (Nonischemic Type of Diabetic Foot) and Gangrene (Diabetic Foot Ischemic Type). Comput Math Methods Med. 2022 Jun 28;2022:8114073. doi: 10.1155/2022/8114073. Retraction in: Comput Math Methods Med. 2023 Jun 28;2023:9865264. doi: 10.1155/2023/9865264. PMID: 35799637; PMCID: PMC9256357. [Retracted article]
  9. Román-Pintos LM, Villegas-Rivera G, Rodríguez-Carrizalez AD, Miranda-Díaz AG, Cardona-Muñoz EG. Diabetic Polyneuropathy in Type 2 Diabetes Mellitus: Inflammation, Oxidative Stress, and Mitochondrial Function. J Diabetes Res. 2016;2016:3425617. doi: 10.1155/2016/3425617. Epub 2016 Dec 12. PMID: 28058263; PMCID: PMC5183791.
  10. de M Bandeira S, da Fonseca LJ, da S Guedes G, Rabelo LA, Goulart MO, Vasconcelos SM. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int J Mol Sci. 2013 Feb 5;14(2):3265-84. doi: 10.3390/ijms14023265. PMID: 23385234; PMCID: PMC3588043.
  11. Joosten MM, Chiuve SE, Mukamal KJ, Hu FB, Hendriks HF, Rimm EB. Changes in alcohol consumption and subsequent risk of type 2 diabetes in men. Diabetes. 2011 Jan;60(1):74-9. doi: 10.2337/db10-1052. Epub 2010 Sep 28. PMID: 20876712; PMCID: PMC3012199.
  12. Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig. 2023 Sep;14(9):1015-1037. doi: 10.1111/jdi.14034. Epub 2023 Jul 3. PMID: 37401013; PMCID: PMC10445217.
  13. Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med. 2024 Jun;7(3):297-309. doi: 10.1002/ame2.12442. Epub 2024 Jun 4. PMID: 38837635; PMCID: PMC11228097.
  14. Han Q, Sun J, Xie W, Bai Y, Wang S, Huang J, Zhou S, Li Q, Zhang H, Tang Z. Repeated Low-Dose Streptozotocin and Alloxan Induced Long-Term and Stable Type 1 Diabetes Model in Beagle Dogs. Biomed Res Int. 2022 Aug 8;2022:5422287. doi: 10.1155/2022/5422287. PMID: 35978645; PMCID: PMC9377912.
  15. Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc. 2021 Apr;1(4):e78. doi: 10.1002/cpz1.78. PMID: 33905609.
  16. Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A, Lackner C, Mathurin P, Mueller S, Szabo G, Tsukamoto H. Alcoholic liver disease. Nat Rev Dis Primers. 2018 Aug 16;4(1):16. doi: 10.1038/s41572-018-0014-7. Erratum in: Nat Rev Dis Primers. 2018 Aug 28;4(1):18. doi: 10.1038/s41572-018-0021-8. PMID: 30115921.
  17. Steiner JL, Crowell KT, Lang CH. Impact of Alcohol on Glycemic Control and Insulin Action. Biomolecules. 2015 Sep 29;5(4):2223-46. doi: 10.3390/biom5042223. PMID: 26426068; PMCID: PMC4693236.
  18. Sumida KD, Cogger AA, Matveyenko AV. Alcohol-induced suppression of gluconeogenesis is greater in ethanol fed female rat hepatocytes than males. Alcohol. 2007 Mar;41(2):67-75. doi: 10.1016/j.alcohol.2007.02.002. Epub 2007 Apr 26. PMID: 17466483; PMCID: PMC1978249.
  19. Huang Z, Sjöholm A. Ethanol acutely stimulates islet blood flow, amplifies insulin secretion, and induces hypoglycemia via nitric oxide and vagally mediated mechanisms. Endocrinology. 2008 Jan;149(1):232-6. doi: 10.1210/en.2007-0632. Epub 2007 Oct 4. PMID: 17916634.
  20. Oba-Yamamoto C, Takeuchi J, Nakamura A, Takikawa R, Ozaki A, Nomoto H, Kameda H, Cho KY, Atsumi T, Miyoshi H. Combination of alcohol and glucose consumption as a risk to induce reactive hypoglycemia. J Diabetes Investig. 2021 Apr;12(4):651-657. doi: 10.1111/jdi.13375. Epub 2020 Sep 7. PMID: 33448697; PMCID: PMC8015820.
  21. Kocharyan NV, Khachatryan HS, Sahakyan IK, Tumasyan NV. Effects of ethanol and the amino acids mixture on pathophysiological processes in rats with alloxan-induced diabetes. Biol J Arm. 2021;3:102-8
  22. Ganesan R, Jeong JJ, Kim DJ, Suk KT. Recent Trends of Microbiota-Based Microbial Metabolites Metabolism in Liver Disease. Front Med (Lausanne). 2022 May 9;9:841281. doi: 10.3389/fmed.2022.841281. PMID: 35615096; PMCID: PMC9125096.
  23. Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med. 2008 Apr 1;44(7):1259-72. doi: 10.1016/j.freeradbiomed.2007.12.029. Epub 2008 Jan 3. PMID: 18242193; PMCID: PMC2323912.
  24. Kim JY, Lee DY, Lee YJ, Park KJ, Kim KH, Kim JW, Kim WH. Chronic alcohol consumption potentiates the development of diabetes through pancreatic β-cell dysfunction. World J Biol Chem. 2015 Feb 26;6(1):1-15. doi: 10.4331/wjbc.v6.i1.1. PMID: 25717351; PMCID: PMC4317634.
  25. Dembele K, Nguyen KH, Hernandez TA, Nyomba BL. Effects of ethanol on pancreatic beta-cell death: interaction with glucose and fatty acids. Cell Biol Toxicol. 2009 Apr;25(2):141-52. doi: 10.1007/s10565-008-9067-9. Epub 2008 Mar 11. PMID: 18330713.
  26. Acherjya GK, Uddin MM, Chowdhury MJ, Srinivasan A. Central Nervous System Manifestations in Diabetes Mellitus - A Review. J Medicine. 2017 Aug 24;18(2):109–12.
  27. Chavda V, Yadav D, Patel S, Song M. Effects of a Diabetic Microenvironment on Neurodegeneration: Special Focus on Neurological Cells. Brain Sci. 2024 Mar 15;14(3):284. doi: 10.3390/brainsci14030284. PMID: 38539672; PMCID: PMC10969071.
  28. Fowler AK, Hewetson A, Agrawal RG, Dagda M, Dagda R, Moaddel R, Balbo S, Sanghvi M, Chen Y, Hogue RJ, Bergeson SE, Henderson GI, Kruman II. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain. J Biol Chem. 2012 Dec 21;287(52):43533-42. doi: 10.1074/jbc.M112.401497. Epub 2012 Nov 1. PMID: 23118224; PMCID: PMC3527940.
  29. Irako T, Akamizu T, Hosoda H, Iwakura H, Ariyasu H, Tojo K, Tajima N, Kangawa K. Ghrelin prevents development of diabetes at adult age in streptozotocin-treated newborn rats. Diabetologia. 2006 Jun;49(6):1264-73. doi: 10.1007/s00125-006-0226-3. Epub 2006 Mar 29. PMID: 16570155.
  30. Liang Y, Yin W, Yin Y, Zhang W. Ghrelin Based Therapy of Metabolic Diseases. Curr Med Chem. 2021;28(13):2565-2576. doi: 10.2174/0929867327666200615152804. PMID: 32538716; PMCID: PMC11213490.
  31. Rasineni K, Thomes PG, Kubik JL, Harris EN, Kharbanda KK, Casey CA. Chronic alcohol exposure alters circulating insulin and ghrelin levels: role of ghrelin in hepatic steatosis. Am J Physiol Gastrointest Liver Physiol. 2019 Apr 1;316(4):G453-G461. doi: 10.1152/ajpgi.00334.2018. Epub 2019 Jan 31. PMID: 30702902; PMCID: PMC6483023.
  32. Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev. 2021 Jan 28;42(1):1-28. doi: 10.1210/endrev/bnaa027. PMID: 33150398; PMCID: PMC7846142.
  33. Gopal T, Ai W, Casey CA, Donohue TM Jr, Saraswathi V. A review of the role of ethanol-induced adipose tissue dysfunction in alcohol-associated liver disease. Alcohol Clin Exp Res. 2021 Oct;45(10):1927-1939. doi: 10.1111/acer.14698. Epub 2021 Sep 23. PMID: 34558087; PMCID: PMC9153937.
  34. Voican CS, Njiké-Nakseu M, Boujedidi H, Barri-Ova N, Bouchet-Delbos L, Agostini H, Maitre S, Prévot S, Cassard-Doulcier AM, Naveau S, Perlemuter G. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 2015 Mar;35(3):967-78. doi: 10.1111/liv.12575. Epub 2014 Jun 3. PMID: 24766056.
  35. Slevin E, Baiocchi L, Wu N, Ekser B, Sato K, Lin E, Ceci L, Chen L, Lorenzo SR, Xu W, Kyritsi K, Meadows V, Zhou T, Kundu D, Han Y, Kennedy L, Glaser S, Francis H, Alpini G, Meng F. Kupffer Cells: Inflammation Pathways and Cell-Cell Interactions in Alcohol-Associated Liver Disease. Am J Pathol. 2020 Nov;190(11):2185-2193. doi: 10.1016/j.ajpath.2020.08.014. Epub 2020 Sep 11. PMID: 32919978; PMCID: PMC7587925.
  36. Carr RM, Dhir R, Yin X, Agarwal B, Ahima RS. Temporal effects of ethanol consumption on energy homeostasis, hepatic steatosis, and insulin sensitivity in mice. Alcohol Clin Exp Res. 2013 Jul;37(7):1091-9. doi: 10.1111/acer.12075. Epub 2013 Feb 7. PMID: 23398239; PMCID: PMC3657580.
  37. Mira RG, Lira M, Tapia-Rojas C, Rebolledo DL, Quintanilla RA, Cerpa W. Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Front Behav Neurosci. 2020 Jan 24;13:288. doi: 10.3389/fnbeh.2019.00288. PMID: 32038190; PMCID: PMC6993074.
  38. Bădescu SV, Tătaru C, Kobylinska L, Georgescu EL, Zahiu DM, Zăgrean AM, Zăgrean L. The association between Diabetes mellitus and Depression. J Med Life. 2016 Apr-Jun;9(2):120-5. PMID: 27453739; PMCID: PMC4863499.
  39. Kwok CL. Central Nervous System Neurotoxicity of Chronic Alcohol Abuse. Asia Pac J Med Toxicol. 2016;2:70-71.
  40. Bordier L, Doucet J, Boudet J, Bauduceau B. Update on cognitive decline and dementia in elderly patients with diabetes. Diabetes Metab. 2014 Nov;40(5):331-7. doi: 10.1016/j.diabet.2014.02.002. Epub 2014 Apr 2. PMID: 24703603.
  41. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003 Apr;4(4):299-309. doi: 10.1038/nrn1078. PMID: 12671646.
  42. Yamanaka M, Itakura Y, Inoue T, Tsuchida A, Nakagawa T, Noguchi H, Taiji M. Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism. 2006 Oct;55(10):1286-92. doi: 10.1016/j.metabol.2006.04.017. PMID: 16979397.
  43. Jani BD, McQueenie R, Nicholl BI, Field R, Hanlon P, Gallacher KI, Mair FS, Lewsey J. Association between patterns of alcohol consumption (beverage type, frequency and consumption with food) and risk of adverse health outcomes: a prospective cohort study. BMC Med. 2021 Jan 12;19(1):8. doi: 10.1186/s12916-020-01878-2. PMID: 33430840; PMCID: PMC7802201.
  44. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020-2025. 9th Edition. December 2020. Available at DietaryGuidelines.gov.
  45. Cullmann M, Hilding A, Östenson CG. Alcohol consumption and risk of pre-diabetes and type 2 diabetes development in a Swedish population. Diabet Med. 2012 Apr;29(4):441-52. doi: 10.1111/j.1464-5491.2011.03450.x. PMID: 21916972.
  46. Song J, Lin WQ. Association between alcohol consumption and incidence of type 2 diabetes mellitus in Japanese men: a secondary analysis of a Retrospective Cohort Study. BMC Endocr Disord. 2023 Apr 25;23(1):91. doi: 10.1186/s12902-023-01350-1. PMID: 37098575; PMCID: PMC10127320.
  47. Cordain L, Melby CL, Hamamoto AE, O'Neill DS, Cornier MA, Barakat HA, Israel RG, Hill JO. Influence of moderate chronic wine consumption on insulin sensitivity and other correlates of syndrome X in moderately obese women. Metabolism. 2000 Nov;49(11):1473-8. doi: 10.1053/meta.2000.17672. PMID: 11092514.
  48. Naissides M, Pal S, Mamo JC, James AP, Dhaliwal S. The effect of chronic consumption of red wine polyphenols on vascular function in postmenopausal women. Eur J Clin Nutr. 2006 Jun;60(6):740-5. doi: 10.1038/sj.ejcn.1602377. Epub 2006 Feb 1. PMID: 16452919.
  49. Kim SH, Abbasi F, Lamendola C, Reaven GM. Effect of moderate alcoholic beverage consumption on insulin sensitivity in insulin-resistant, nondiabetic individuals. Metabolism. 2009 Mar;58(3):387-92. doi: 10.1016/j.metabol.2008.10.013. PMID: 19217456; PMCID: PMC2676844.
  50. Lee DY, Yoo MG, Kim HJ, Jang HB, Kim JH, Lee HJ, Park SI. Association between alcohol consumption pattern and the incidence risk of type 2 diabetes in Korean men: A 12-years follow-up study. Sci Rep. 2017 Aug 4;7(1):7322. doi: 10.1038/s41598-017-07549-2. PMID: 28779170; PMCID: PMC5544746.
  51. Thompson A, Cook J, Choquet H, Jorgenson E, Yin J, Kinnunen T, Barclay J, Morris AP, Pirmohamed M. Functional validity, role, and implications of heavy alcohol consumption genetic loci. Sci Adv. 2020 Jan 15;6(3):eaay5034. doi: 10.1126/sciadv.aay5034. PMID: 31998841; PMCID: PMC6962045.
  52. Zhang S, Liu Y, Wang G, Xiao X, Gang X, Li F, Sun C, Gao Y, Wang G. The Relationship between Alcohol Consumption and Incidence of Glycometabolic Abnormality in Middle-Aged and Elderly Chinese Men. Int J Endocrinol. 2016;2016:1983702. doi: 10.1155/2016/1983702. Epub 2016 Feb 14. PMID: 26981121; PMCID: PMC4769752.
  53. Schrieks IC, Heil AL, Hendriks HF, Mukamal KJ, Beulens JW. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care. 2015 Apr;38(4):723-32. doi: 10.2337/dc14-1556. PMID: 25805864.
  54. Knott C, Bell S, Britton A. Alcohol Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of More Than 1.9 Million Individuals From 38 Observational Studies. Diabetes Care. 2015 Sep;38(9):1804-12. doi: 10.2337/dc15-0710. PMID: 26294775.
  55. Estruch R, Sacanella E, Mota F, Chiva-Blanch G, Antúnez E, Casals E, Deulofeu R, Rotilio D, Andres-Lacueva C, Lamuela-Raventos RM, de Gaetano G, Urbano-Marquez A. Moderate consumption of red wine, but not gin, decreases erythrocyte superoxide dismutase activity: a randomised cross-over trial. Nutr Metab Cardiovasc Dis. 2011 Jan;21(1):46-53. doi: 10.1016/j.numecd.2009.07.006. Epub 2009 Oct 12. PMID: 19819677.
  56. Micallef M, Lexis L, Lewandowski P. Red wine consumption increases antioxidant status and decreases oxidative stress in the circulation of both young and old humans. Nutr J. 2007 Sep 24;6:27. doi: 10.1186/1475-2891-6-27. PMID: 17888186; PMCID: PMC2039729.
  57. Chiva-Blanch G, Urpi-Sarda M, Ros E, Valderas-Martinez P, Casas R, Arranz S, Guillén M, Lamuela-Raventós RM, Llorach R, Andres-Lacueva C, Estruch R. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: a randomized clinical trial. Clin Nutr. 2013 Apr;32(2):200-6. doi: 10.1016/j.clnu.2012.08.022. Epub 2012 Sep 3. PMID: 22999066.
  58. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ. 2011 Feb 22;342:d671. doi: 10.1136/bmj.d671. PMID: 21343207; PMCID: PMC3043109.
  59. Sun X, Ho JE, Gao H, Evangelou E, Yao C, Huan T, Hwang SJ, Courchesne P, Larson MG, Levy D, Ma J, Liu C. Associations of Alcohol Consumption with Cardiovascular Disease-Related Proteomic Biomarkers: The Framingham Heart Study. J Nutr. 2021 Sep 4;151(9):2574-2582. doi: 10.1093/jn/nxab186. PMID: 34159370; PMCID: PMC8417922.
  60. Brien SE, Ronksley PE, Turner BJ, Mukamal KJ, Ghali WA. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011 Feb 22;342:d636. doi: 10.1136/bmj.d636. PMID: 21343206; PMCID: PMC3043110.
  61. Taylor B, Irving HM, Baliunas D, Roerecke M, Patra J, Mohapatra S, Rehm J. Alcohol and hypertension: gender differences in dose-response relationships determined through systematic review and meta-analysis. Addiction. 2009 Dec;104(12):1981-90. doi: 10.1111/j.1360-0443.2009.02694.x. Epub 2009 Oct 5. PMID: 19804464.
  62. Whitfield JB, Heath AC, Madden PA, Pergadia ML, Montgomery GW, Martin NG. Metabolic and biochemical effects of low-to-moderate alcohol consumption. Alcohol Clin Exp Res. 2013 Apr;37(4):575-86. doi: 10.1111/acer.12015. Epub 2012 Nov 7. PMID: 23134229; PMCID: PMC3568441.
  63. Toth A, Sandor B, Papp J, Rabai M, Botor D, Horvath Z, Kenyeres P, Juricskay I, Toth K, Czopf L. Moderate red wine consumption improves hemorheological parameters in healthy volunteers. Clin Hemorheol Microcirc. 2014;56(1):13-23. doi: 10.3233/CH-2012-1640. PMID: 23089888.

Download Article
Received October 14, 2025.
Accepted November 21, 2025.
©2025 International Medical Research and Development Corporation.